Tetsuo Koshizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513792/publications.pdf

Version: 2024-02-01

471477 580810 47 687 17 25 citations h-index g-index papers 47 47 47 736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification and Characterization of the UL56 Gene Product of Herpes Simplex Virus Type 2. Journal of Virology, 2002, 76, 6718-6728.	3.4	72
2	Herpes simplex virus encodes a virion-associated protein which promotes long cellular processes in over-expressing cells. Genes To Cells, 2001, 6, 955-966.	1.2	57
3	Subcellular Localization of Herpes Simplex Virus Type 1 UL51 Protein and Role of Palmitoylation in Golgi Apparatus Targeting. Journal of Virology, 2003, 77, 3204-3216.	3.4	56
4	Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. Journal of General Virology, 2005, 86, 527-533.	2.9	54
5	Herpes Simplex Virus Type 2 UL56 Interacts with the Ubiquitin Ligase Nedd4 and Increases Its Ubiquitination. Journal of Virology, 2008, 82, 5220-5233.	3.4	37
6	Antibacterial effects of the artificial surface of nanoimprinted moth-eye film. PLoS ONE, 2017, 12, e0185366.	2.5	35
7	Herpes simplex virus type 2 US3 blocks apoptosis induced by sorbitol treatment. Microbes and Infection, 2002, 4, 707-712.	1.9	32
8	Characterization of varicella-zoster virus-encoded ORFO geneâ€"Comparison of parental and vaccine strains. Virology, 2010, 405, 280-288.	2.4	31
9	lba1-expressing microglia respond to herpes simplex virus infection in the mouse trigeminal ganglion. Molecular Brain Research, 2003, 120, 52-56.	2.3	29
10	Herpes simplex virus protein UL11 but not UL51 is associated with lipid rafts. Virus Genes, 2007, 35, 571-575.	1.6	28
11	Association of Two Membrane Proteins Encoded by Herpes Simplex Virus Type 2, UL11 and UL56. Virus Genes, 2006, 32, 153-163.	1.6	23
12	Identification and characterization of the UL24 gene product of herpes simplex virus type 2. Virus Genes, 2001, 22, 321-327.	1.6	21
13	A Single Amino Acid Substitution in the ICP27 Protein of Herpes Simplex Virus Type 1 Is Responsible for Its Resistance to Leptomycin B. Journal of Virology, 2001, 75, 1039-1043.	3.4	19
14	Involvement of herpes simplex virus type 1 UL13 protein kinase in induction of SOCS genes, the negative regulators of cytokine signaling. Microbiology and Immunology, 2017, 61, 159-167.	1.4	19
15	Herpesviruses possess conserved proteins for interaction with Nedd4 family ubiquitin E3 ligases. Scientific Reports, 2018, 8, 4447.	3.3	19
16	Degradation of host ubiquitin E3 ligase Itch by human cytomegalovirus UL42. Journal of General Virology, 2016, 97, 196-208.	2.9	19
17	The US3 protein kinase of herpes simplex virus attenuates the activation of the c-Jun N-terminal protein kinase signal transduction pathway in infected piriform cortex neurons of C57BL/6 mice. Neuroscience Letters, 2003, 351, 201-205.	2.1	18
18	A Double-Blind Controlled Study to Evaluate the Effects of Yogurt Enriched with Lactococcus lactis $11/19$ -B1 and Bifidobacterium lactis on Serum Low-Density Lipoprotein Level and Antigen-Specific Interferon- \hat{l}^3 Releasing Ability. Nutrients, 2018, 10, 1778.	4.1	14

#	Article	IF	CITATIONS
19	The US11 Gene Product of Herpes Simplex Virus Has Intercellular Trafficking Activity. Biochemical and Biophysical Research Communications, 2001, 288, 597-602.	2.1	10
20	Relationship Between Human \hat{I}^2 -Defensin 2 and the Vaginal Environment. Japanese Journal of Infectious Diseases, 2020, 73, 214-220.	1.2	10
21	Varicella-zoster virus ORF1 gene product is a tail-anchored membrane protein localized to plasma membrane and trans-Golgi network in infected cells. Virology, 2008, 377, 289-295.	2.4	9
22	Rapid and efficient introduction of a foreign gene into bacterial artificial chromosome-cloned varicella vaccine by Tn7-mediated site-specific transposition. Virology, 2010, 402, 215-221.	2.4	8
23	Analysis of relationships between polymorphisms in the genes encoding the pentameric complex and neutralization of clinical cytomegalovirus isolates. Vaccine, 2018, 36, 5983-5989.	3.8	7
24	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. PLoS ONE, 2020, 15, e0232635.	2.5	6
25	Characterization of a thiourea derivative that targets viral transactivators of cytomegalovirus and herpes simplex virus type 1. Antiviral Research, 2021, 196, 105207.	4.1	6
26	Intercellular trafficking of herpes simplex virus type 2 UL14 deletion mutant proteins. Biochemical and Biophysical Research Communications, 2002, 298, 357-363.	2.1	5
27	Evaluation of the indirect and IgMâ€capture antiâ€human cytomegalovirus IgM ELISA methods as confirmed by cytomegalovirus IgG avidity. Microbiology and Immunology, 2019, 63, 172-178.	1.4	5
28	Detection of engraftment of donor-derived antibody producing cells in a lung transplant recipient by anti-cytomegalovirus IgG avidity test. Transplant Immunology, 2019, 53, 34-37.	1.2	5
29	Intercellular trafficking activity of herpes simplex virus US11 gene product in the mouse brain. Molecular Brain Research, 2005, 136, 158-163.	2.3	4
30	Human cytomegalovirus UL42 protein inhibits the degradation of glycoprotein B through inhibition of Nedd4 family ubiquitin E3 ligases. Microbiology and Immunology, 2021, 65, 472-480.	1.4	4
31	The Carboxyl-Terminal Penta-Peptide Repeats of Major Royal Jelly Protein 3 Enhance Cell Proliferation. Biological and Pharmaceutical Bulletin, 2020, 43, 1911-1916.	1.4	4
32	The C-Terminal Penta-Peptide Repeats of Major Royal Jelly Protein 3 Ameliorate the Progression of Inflammation & Lt;i>in Vivo and & Lt;i>in Vitro. Biological and Pharmaceutical Bulletin, 2022, 45, 583-589.	1.4	4
33	Modification of the HCMV-specific IFN- \hat{l}^3 release test (QuantiFERON-CMV) and a novel proposal for its application. Fukushima Journal of Medical Sciences, 2017, 63, 64-74.	0.4	3
34	Congenital cytomegalovirus infection via a re-infected mother with original antigenic sin: A case report. International Journal of Infectious Diseases, 2018, 77, 87-89.	3.3	2
35	A twoâ€step culture method utilizing secreted luciferase recombinant virus for detection of antiâ€cytomegalovirus compounds. Microbiology and Immunology, 2018, 62, 651-658.	1.4	2
36	The Guinea pig cytomegalovirus GP119.1 gene encodes an IgGâ€binding glycoprotein that is incorporated into the virion. Microbiology and Immunology, 2021, 65, 28-39.	1.4	2

#	Article	IF	CITATIONS
37	Protection of Fatty Liver by the Intake of Fermented Soybean Paste, Miso, and Its Pre-Fermented Mixture. Foods, 2021, 10, 291.	4.3	2
38	Protection from lethal herpes simplex virus type 1 infection by vaccination with a UL41-deficient recombinant strain. Fukushima Journal of Medical Sciences, 2016, 62, 36-42.	0.4	2
39	Intimate Adhesion Is Essential for the Pathogen-Specific Inflammatory and Immune Responses in the Gut of Mice Infected with Citrobacter rodentium. ImmunoHorizons, 2021, 5, 870-883.	1.8	2
40	Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells. Scientific Reports, 2020, 10, 8530.	3.3	1
41	Identification and functional analyses of a cell-death inhibitor encoded by guinea pig cytomegalovirus gp38.1 in cell culture and in animals. Journal of General Virology, 2020, 101, 1270-1279.	2.9	1
42	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation., 2020, 15, e0232635.		0
43	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. , 2020, 15, e0232635.		O
44	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation., 2020, 15, e0232635.		0
45	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. , 2020, 15, e0232635.		O
46	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation., 2020, 15, e0232635.		0
47	Activation of c-Jun by human cytomegalovirus UL42 through JNK activation. , 2020, 15, e0232635.		O