Kai Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/8513737/kai-wang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 3,972 31 63 g-index

67 4,656 15.4 5.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
61	High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO. <i>Nature Communications</i> , 2018 , 9, 3239	17.4	721
60	Low bandgap semiconducting polymers for polymeric photovoltaics. <i>Chemical Society Reviews</i> , 2016 , 45, 4825-46	58.5	372
59	Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4928-35	9.5	241
58	Bulk heterojunction perovskite hybrid solar cells with large fill factor. <i>Energy and Environmental Science</i> , 2015 , 8, 1245-1255	35.4	223
57	Quasi-Two-Dimensional Halide Perovskite Single Crystal Photodetector. ACS Nano, 2018, 12, 4919-4929	16.7	178
56	NiSe@MoSe Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. <i>ACS Applied Materials & Materia</i>	9.5	160
55	Inverted organic photovoltaic cells. <i>Chemical Society Reviews</i> , 2016 , 45, 2937-75	58.5	153
54	Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer. <i>Advanced Energy Materials</i> , 2016 , 6, 1501773	21.8	113
53	Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. <i>Nano Letters</i> , 2019 , 19, 3313-3320	11.5	111
52	Molecular weight effect on the efficiency of polymer solar cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 12163-7	9.5	102
51	Ultrasensitive solution-processed broad-band photodetectors using CHNHPbliperovskite hybrids and PbS quantum dots as light harvesters. <i>Nanoscale</i> , 2015 , 7, 16460-9	7.7	90
50	High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 1153-9	9.5	90
49	Ultrasensitive solution-processed perovskite hybrid photodetectors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6600-6606	7.1	88
48	PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. <i>Nano Energy</i> , 2016 , 30, 27-35	17.1	79
47	Isothermally crystallized perovskites at room-temperature. <i>Energy and Environmental Science</i> , 2020 , 13, 3412-3422	35.4	71
46	Recent progress in fundamental understanding of halide perovskite semiconductors. <i>Progress in Materials Science</i> , 2019 , 106, 100580	42.2	69
45	Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. <i>ACS Applied Materials & Solid-State Supercapacitors</i> . <i>ACS Applied Materials & Solid-State Supercapacitors</i> . <i>ACS Applied Materials & Solid-State Supercapacitors</i> .	9.5	68

(2019-2019)

44	Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. <i>Nano Energy</i> , 2019 , 61, 352-360	17.1	53
43	Wide-Bandgap Perovskite Solar Cells With Large Open-Circuit Voltage of 1653 mV Through Interfacial Engineering. <i>Solar Rrl</i> , 2018 , 2, 1800083	7.1	51
42	Localized Electron Density Engineering for Stabilized B-ICsSnI3-Based Perovskite Solar Cells with Efficiencies >10%. ACS Energy Letters,1480-1489	20.1	50
41	Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering. <i>Advanced Functional Materials</i> , 2015 , 25, 6875-6884	15.6	48
40	Distinct conducting layer edge states in two-dimensional (2D) halide perovskite. <i>Science Advances</i> , 2019 , 5, eaau3241	14.3	47
39	Effect of Oligothiophene Bridge Length on the Photovoltaic Properties of DA Copolymers Based on Carbazole and Quinoxalinoporphyrin. <i>Macromolecules</i> , 2012 , 45, 7806-7814	5.5	47
38	Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2013 , 5, 10325-30	9.5	42
37	Efficient Perovskite Hybrid Solar Cells Through a Homogeneous High-Quality Organolead Iodide Layer. <i>Small</i> , 2015 , 11, 3369-76	11	40
36	High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2016 , 8, 1876-83	9.5	37
35	Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells. <i>Organic Electronics</i> , 2016 , 39, 288-295	3.5	36
34	Mono-crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency?. <i>Joule</i> , 2019 , 3, 311-316	27.8	33
33	Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells. <i>Organic Electronics</i> , 2017 , 41, 42-48	3.5	32
32	Radical polymers as interfacial layers in inverted hybrid perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23831-23839	13	32
31	High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9592-9598	7.1	31
30	High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene oxide). <i>Nano Energy</i> , 2020 , 67, 104229	17.1	31
29	All electrospray printed perovskite solar cells. <i>Nano Energy</i> , 2018 , 53, 440-448	17.1	31
28	Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. <i>ACS Applied Materials & Damp; Interfaces</i> , 2017 , 9, 5348-5357	9.5	28
27	Nonionic Sc3[email[protected]80 Dopant for Efficient and Stable Halide Perovskite Photovoltaics. <i>ACS Energy Letters</i> , 2019 , 4, 1852-1861	20.1	28

26	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1804419	15.6	28
25	Ultrahigh Durability Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 1251-1259	11.5	27
24	Enhanced performance of polymer solar cells using PEDOT:PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer. <i>ACS Applied Materials & Discourse Materials & Disc</i>	9.5	27
23	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 2646-2655	20.1	26
22	Multifunctional nanostructured materials for next generation photovoltaics. <i>Nano Energy</i> , 2020 , 70, 10	4 49 0	25
21	A Nonionic and Low-Entropic MA(MMA)nPbI3-Ink for Fast Crystallization of Perovskite Thin Films. <i>Joule</i> , 2020 , 4, 615-630	27.8	23
20	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4190-4197	7.1	20
19	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24661-24690	13	18
18	Melanin Perovskite Composites for Photothermal Conversion. Advanced Energy Materials, 2019, 9, 1901	7<u>5</u>3 8	18
17	Self-Powered Red/UV Narrowband Photodetector by Unbalanced Charge Carrier Transport Strategy. <i>Advanced Functional Materials</i> , 2021 , 31, 2007016	15.6	18
16	Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. <i>ACS Energy Letters</i> , 2021 , 6, 3044-3052	20.1	16
15	Two-dimensional hybrid organicIhorganic perovskites as emergent ferroelectric materials. <i>Journal of Applied Physics</i> , 2020 , 128, 060906	2.5	13
14	Organismic materials for beyond von Neumann machines. <i>Applied Physics Reviews</i> , 2020 , 7, 011309	17.3	12
13	Artemisinin (ART)-Induced Berovskite/perovskitelbilayer structured photovoltaics. <i>Nano Energy</i> , 2020 , 78, 105133	17.1	11
12	Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with Heterovalent Neodymium Cations. <i>ACS Omega</i> , 2019 , 4, 15873-15878	3.9	10
11	Dne-key-resetIrecycling of whole perovskite solar cell. <i>Matter</i> , 2021 , 4, 2522-2541	12.7	10
10	Nature of terrace edge states (TES) in lower-dimensional halide perovskite. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7659-7670	13	8
9	Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications. <i>RSC Advances</i> , 2015 , 5, 51975-51982	3.7	8

LIST OF PUBLICATIONS

3.7	4
8.1	2
2.3	2
58.5	2
3.2	1
1.5	
20.1	
	2.3 58.5 3.2