
Donald A Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8513481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 2022, 298, 101424.	1.6	32
2	Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Journal of Biological Chemistry, 2022, 298, 101408.	1.6	16
3	Elioraea tepida, sp. nov., a Moderately Thermophilic Aerobic Anoxygenic Phototrophic Bacterium Isolated from the Mat Community of an Alkaline Siliceous Hot Spring in Yellowstone National Park, WY, USA. Microorganisms, 2022, 10, 80.	1.6	1
4	Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. Photosynthesis Research, 2022, 153, 21-42.	1.6	4
5	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	4.7	9
6	Adaptation of Cyanobacteria to the Endolithic Light Spectrum in Hyper-Arid Deserts. Microorganisms, 2022, 10, 1198.	1.6	5
7	Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms, 2022, 10, 1270.	1.6	13
8	Use of Quartz Sand Columns to Study Far-Red Light Photoacclimation (FaRLiP) in Cyanobacteria. Applied and Environmental Microbiology, 2022, 88, .	1.4	4
9	The structural basis of far-red light absorbance by allophycocyanins. Photosynthesis Research, 2021, 147, 11-26.	1.6	20
10	Host population diversity as a driver of viral infection cycle in wild populations of green sulfur bacteria with long standing virus-host interactions. ISME Journal, 2021, 15, 1569-1584.	4.4	16
11	Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light. BBA Advances, 2021, 1, 100019.	0.7	6
12	Photosynthesis Long Wavelength Pigments in Photosynthesis. , 2021, , 245-255.		2
13	Genomic and Phenotypic Characterization of Chloracidobacterium Isolates Provides Evidence for Multiple Species. Frontiers in Microbiology, 2021, 12, 704168.	1.5	3
14	Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
15	Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I. CheM, 2021, 7, 155-173.	5.8	17
16	Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148064.	0.5	46
17	Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. Photosynthesis Research, 2020, 143, 81-95.	1.6	25
18	Characterization of cyanobacterial allophycocyanins absorbing far-red light. Photosynthesis Research, 2020, 145, 189-207.	1.6	26

#	Article	IF	CITATIONS
19	Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. Communications Biology, 2020, 3, 408.	2.0	21
20	Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148206.	0.5	25
21	Two-dimensional ⁶⁷ Zn HYSCORE spectroscopy reveals that a Zn-bacteriochlorophyll <i>a</i> _P ′ dimer is the primary donor (P ₈₄₀) in the type-1 reaction centers of <i>Chloracidobacterium thermophilum</i> . Physical Chemistry Chemical Physics, 2020, 22, 6457-6467.	1.3	17
22	Niche expansion for phototrophic sulfur bacteria at the Proterozoic–Phanerozoic transition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17599-17606.	3.3	36
23	The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 2020, 6, eaay6415.	4.7	50
24	Short-Term Stable Isotope Probing of Proteins Reveals Taxa Incorporating Inorganic Carbon in a Hot Spring Microbial Mat. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
25	Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148184.	0.5	26
26	Biosynthesis of the modified tetrapyrroles—the pigments of life. Journal of Biological Chemistry, 2020, 295, 6888-6925.	1.6	170
27	Caldichromatium japonicum gen. nov., sp. nov., a novel thermophilic phototrophic purple sulphur bacterium of the Chromatiaceae isolated from Nakabusa hot springs, Japan. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5701-5710.	0.8	17
28	Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthesis Research, 2019, 140, 77-92.	1.6	56
29	Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 209-223.	0.5	36
30	Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 2019, 141, 151-163.	1.6	47
31	Phototrophy and Phototrophs. , 2019, , 527-527.		2
32	Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization. Photosynthesis Research, 2019, 142, 87-103.	1.6	16
33	Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A–1 cofactor is chlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 452-460.	0.5	16
34	Biosynthesis of chlorophylls and bacteriochlorophylls in green bacteria. Advances in Botanical Research, 2019, , 35-89.	0.5	21
35	Global Transcriptional Profiling of the Cyanobacterium Chlorogloeopsis fritschii PCC 9212 in Far-Red Light: Insights Into the Regulation of Chlorophyll d Synthesis. Frontiers in Microbiology, 2019, 10, 465.	1.5	28
36	Crossing the Thauer limit: rewiring cyanobacterial metabolism to maximize fermentative H ₂ production. Energy and Environmental Science, 2019, 12, 1035-1045.	15.6	10

#	Article	IF	CITATIONS
37	Elucidating the Role of Zinc-Bacteriochlorophyll A' in the Primary Photochemistry of Chloroacidobacterium thermophilum Reaction Centers. Biophysical Journal, 2019, 116, 419a.	0.2	1
38	Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. Annual Review of Plant Biology, 2018, 69, 21-49.	8.6	94
39	Engineered biosynthesis of bacteriochlorophyll gF in Rhodobacter sphaeroides. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 501-509.	0.5	15
40	De novo synthetic biliprotein design, assembly and excitation energy transfer. Journal of the Royal Society Interface, 2018, 15, 20180021.	1.5	18
41	Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. Journal of Biological Chemistry, 2018, 293, 8473-8483.	1.6	59
42	Complete enzyme set for chlorophyll biosynthesis in <i>Escherichia coli</i> . Science Advances, 2018, 4, eaaq1407.	4.7	40
43	A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiology Reviews, 2018, 42, 205-231.	3.9	115
44	How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 033001.	0.6	97
45	15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum. Photosynthesis Research, 2018, 137, 295-305.	1.6	20
46	Presence of a [3Fe–4S] cluster in a PsaC variant as a functional component of the photosystem I electron transfer chain in Synechococcus sp. PCC 7002. Photosynthesis Research, 2018, 136, 31-48.	1.6	3
47	Electron–Phonon Coupling in Cyanobacterial Photosystem I. Journal of Physical Chemistry B, 2018, 122, 7943-7955.	1.2	16
48	A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria. Journal of Biological Chemistry, 2018, 293, 15233-15242.	1.6	9
49	Structural Variations in Chlorosomes from Wild-Type and a <i>bchQR</i> Mutant of <i>Chlorobaculum tepidum</i> Revealed by Single-Molecule Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 6712-6723.	1.2	18
50	"Candidatus Thermonerobacter thiotrophicus,―A Non-phototrophic Member of the Bacteroidetes/Chlorobi With Dissimilatory Sulfur Metabolism in Hot Spring Mat Communities. Frontiers in Microbiology, 2018, 9, 3159.	1.5	57
51	Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly. ISME Journal, 2017, 11, 201-211.	4.4	40
52	BciD Is a Radical S-Adenosyl-I-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. Journal of Biological Chemistry, 2017, 292, 1361-1373.	1.6	22
53	Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. Journal of the Royal Society Interface, 2017, 14, 20160896.	1.5	18
54	Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology, 2017, 37, 24-33.	3.5	93

#	Article	IF	CITATIONS
55	A Panoply of Phototrophs: An Overview of the Thermophilic Chlorophototrophs of the Microbial Mats of Alkaline Siliceous Hot Springs in Yellowstone National Park, WY, USA. , 2017, , 87-137.		62
56	Complete Genome Sequence of the Photoautotrophic and Bacteriochlorophyll <i>e</i> -Synthesizing Green Sulfur Bacterium Chlorobaculum limnaeum DSM 1677 ^T . Genome Announcements, 2017, 5, .	0.8	2
57	Polymer–Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. Langmuir, 2017, 33, 6427-6438.	1.6	17
58	Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership. MSystems, 2017, 2, .	1.7	20
59	Draft Genome Sequence of Anoxybacillus ayderensis Strain MT-Cab (Firmicutes). Genome Announcements, 2017, 5, .	0.8	3
60	Repurposing a photosynthetic antenna protein as a super-resolution microscopy label. Scientific Reports, 2017, 7, 16807.	1.6	1
61	The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Scientific Reports, 2017, 7, 16324.	1.6	115
62	Zn ²⁺ -Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the <i>smtA</i> Promoter/Operator and <i>smtB</i> Repressor. Applied and Environmental Microbiology, 2017, 83, .	1.4	14
63	Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. Photosynthesis Research, 2017, 131, 267-280.	1.6	16
64	Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynthesis Research, 2017, 131, 187-202.	1.6	75
65	Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis Research, 2017, 131, 173-186.	1.6	67
66	The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Frontiers in Microbiology, 2017, 8, 943.	1.5	100
67	The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases Cpl and Cpll of Clostridium pasteurianum Strain W5. Frontiers in Microbiology, 2017, 8, 1305.	1.5	30
68	Genome Sequence of Prosthecochloris sp. Strain HL-130-GSB, from the Phylum Chlorobi. Genome Announcements, 2017, 5, .	0.8	3
69	The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. Frontiers in Microbiology, 2016, 7, 919.	1.5	123
70	Natural and Synthetic Variants of the Tricarboxylic Acid Cycle in Cyanobacteria: Introduction of the GABA Shunt into Synechococcus sp. PCC 7002. Frontiers in Microbiology, 2016, 7, 1972.	1.5	46
71	Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 2016, 353, .	6.0	155
72	Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnology and Bioengineering, 2016, 113, 979-988.	1.7	13

#	Article	IF	CITATIONS
73	Genome Sequence of Prosthecochloris sp. Strain CIB 2401 of the Phylum Chlorobi. Genome Announcements, 2016, 4, .	0.8	3
74	The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. Photosynthesis Research, 2016, 128, 325-340.	1.6	18
75	Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth. MBio, 2016, 7, .	1.8	38
76	Network analysis of transcriptomics expands regulatory landscapes in <i>Synechococcus</i> sp. PCC 7002. Nucleic Acids Research, 2016, 44, 8810-8825.	6.5	26
77	Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002. Journal of Bacteriology, 2016, 198, 2753-2761.	1.0	26
78	Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch <i>In Vivo</i> . Journal of Bacteriology, 2016, 198, 2743-2752.	1.0	25
79	Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry, 2016, 55, 6981-6995.	1.2	34
80	Consequences of <i>ccmR</i> deletion on respiration, fermentation and H ₂ metabolism in cyanobacterium <i>Synechococcus sp</i> . PCC 7002. Biotechnology and Bioengineering, 2016, 113, 1448-1459.	1.7	5
81	Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum. Photosynthesis Research, 2016, 128, 235-241.	1.6	11
82	Structure of Light-Harvesting Aggregates in Individual Chlorosomes. Journal of Physical Chemistry B, 2016, 120, 5367-5376.	1.2	55
83	The role of biology in planetary evolution: cyanobacterial primary production in lowâ€oxygen Proterozoic oceans. Environmental Microbiology, 2016, 18, 325-340.	1.8	151
84	Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups. Langmuir, 2016, 32, 1818-1827.	1.6	22
85	Adaptive and acclimative responses of cyanobacteria to farâ€red light. Environmental Microbiology, 2015, 17, 3450-3465.	1.8	158
86	High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discovery, 2015, 1, 15004.	3.1	40
87	The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Frontiers in Microbiology, 2015, 6, 590.	1.5	49
88	The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. Frontiers in Microbiology, 2015, 6, 604.	1.5	67
89	The molecular dimension of microbial species: 2. Synechococcus strains representative of putative ecotypes inhabiting different depths in the Mushroom Spring microbial mat exhibit different adaptive and acclimative responses to light. Frontiers in Microbiology, 2015, 6, 626.	1.5	56
90	Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002. Frontiers in Microbiology, 2015, 6, 1217.	1.5	50

#	Article	IF	CITATIONS
91	RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP). Frontiers in Microbiology, 2015, 6, 1303.	1.5	82
92	Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212. Journal of Biological Chemistry, 2015, 290, 14019-14030.	1.6	69
93	Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria. Life, 2015, 5, 4-24.	1.1	155
94	Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1426-1430.	0.8	96
95	Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Frontiers in Microbiology, 2015, 06, 226.	1.5	65
96	Dynamics of Photosynthesis in a Glycogen-Deficient <i>glgC</i> Mutant of Synechococcus sp. Strain PCC 7002. Applied and Environmental Microbiology, 2015, 81, 6210-6222.	1.4	29
97	Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Frontiers in Microbiology, 2015, 6, 209.	1.5	104
98	Draft Genome Sequence of the Deinococcus-Thermus Bacterium Meiothermus ruber Strain A. Genome Announcements, 2015, 3, .	0.8	8
99	Structure and Absolute Configuration of Auriculamide, a Natural Product from the Predatory Bacterium <i>Herpetosiphon aurantiacus</i> . European Journal of Organic Chemistry, 2015, 2015, 3057-3062.	1.2	14
100	Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-4-hydroxybutyrate. Metabolic Engineering, 2015, 32, 174-183.	3.6	50
101	Electron transfer from the A1A and A1B sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 325-334.	1.7	5
102	NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochemical and Photobiological Sciences, 2015, 14, 258-269.	1.6	50
103	Recombination Does Not Hinder Formation or Detection of Ecological Species of Synechococcus Inhabiting a Hot Spring Cyanobacterial Mat. Frontiers in Microbiology, 2015, 6, 1540.	1.5	16
104	ChlR Protein of Synechococcus sp. PCC 7002 Is a Transcription Activator That Uses an Oxygen-sensitive [4Fe-4S] Cluster to Control Genes involved in Pigment Biosynthesis. Journal of Biological Chemistry, 2014, 289, 16624-16639.	1.6	26
105	Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5633-42.	3.3	55
106	Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Frontiers in Microbiology, 2014, 5, 488.	1.5	32
107	Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (<i>Bacteroidetes</i>). Genome Announcements, 2014, 2, .	0.8	13
108	Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, <i>Chloroflexus</i> sp. Strain MS-G (<i>Chloroflexi</i>). Genome Announcements, 2014, 2,	0.8	18

#	Article	IF	CITATIONS
109	wPMLGâ€5 Spectroscopy of Selfâ€Aggregated BChl <i>e</i> in Natural Chlorosomes of <i>Chlorobaculum Limnaeum</i> . Israel Journal of Chemistry, 2014, 54, 147-153.	1.0	1
110	Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnology for Biofuels, 2014, 7, 154.	6.2	28
111	Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 2014, 345, 1312-1317.	6.0	332
112	Photophysical Properties of the Excited States of Bacteriochlorophyll <i>f</i> in Solvents and in Chlorosomes. Journal of Physical Chemistry B, 2014, 118, 2295-2305.	1.2	24
113	Ether- and Ester-Bound <i>iso</i> -Diabolic Acid and Other Lipids in Members of Acidobacteria Subdivision 4. Applied and Environmental Microbiology, 2014, 80, 5207-5218.	1.4	112
114	Triplet Excited State Energies and Phosphorescence Spectra of (Bacterio)Chlorophylls. Journal of Physical Chemistry B, 2014, 118, 7221-7232.	1.2	41
115	Inference of interactions in cyanobacterial–heterotrophic co-cultures via transcriptome sequencing. ISME Journal, 2014, 8, 2243-2255.	4.4	75
116	Vipp1 Is Essential for the Biogenesis of Photosystem I but Not Thylakoid Membranes in Synechococcus sp. PCC 7002. Journal of Biological Chemistry, 2014, 289, 15904-15914.	1.6	60
117	Learning new tricks from an old cycle: the TCA cycle in cyanobacteria, algae and plants. Perspectives in Phycology, 2014, 1, 73-86.	1.9	8
118	Green Bacteria. Advances in Botanical Research, 2013, 66, 99-150.	0.5	31
119	Characterization of BciB: A Ferredoxin-Dependent 8-Vinyl-Protochlorophyllide Reductase from the Green Sulfur Bacterium <i>Chloroherpeton thalassium</i> . Biochemistry, 2013, 52, 8442-8451.	1.2	25
120	Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. Energy and Environmental Science, 2013, 6, 3722.	15.6	44
121	Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum― Genome Biology, 2013, 14, R127.	13.9	40
122	[2Fe-2S] Proteins in Chlorosomes: Csml and CsmJ Participate in Light-Dependent Control of Energy Transfer in Chlorosomes of <i>Chlorobaculum tepidum</i> . Biochemistry, 2013, 52, 1321-1330.	1.2	10
123	Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metabolic Engineering, 2013, 16, 56-67.	3.6	116
124	Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1235-1244.	0.5	22
125	Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 493-501.	0.5	30
126	Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME Journal, 2013, 7, 1775-1789.	4.4	168

#	Article	IF	CITATIONS
127	Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Biotechnology, 2013, 166, 65-75.	1.9	46
128	Structural and Biochemical Characterization of the Bilin Lyase CpcS from Thermosynechococcus elongatus. Biochemistry, 2013, 52, 8663-8676.	1.2	29
129	[2Fe-2S] Proteins in Chlorosomes: Redox Properties of Csml, CsmJ, and CsmX of the Chlorosome Envelope of <i>Chlorobaculum tepidum</i> . Biochemistry, 2013, 52, 1331-1343.	1.2	4
130	Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments. Frontiers in Microbiology, 2013, 4, 106.	1.5	112
131	Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria. Frontiers in Microbiology, 2013, 4, 407.	1.5	55
132	Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources. Frontiers in Microbiology, 2012, 3, 145.	1.5	124
133	Circular Dichroism Measured on Single Chlorosomal Light-Harvesting Complexes of Green Photosynthetic Bacteria. Journal of Physical Chemistry Letters, 2012, 3, 3545-3549.	2.1	27
134	Functional Genomics in an Ecological and Evolutionary Context: Maximizing the Value of Genomes in Systems Biology. Advances in Photosynthesis and Respiration, 2012, , 1-16.	1.0	7
135	Structural Variability in Wild-Type and <i>bchQ bchR</i> Mutant Chlorosomes of the Green Sulfur Bacterium <i>Chlorobaculum tepidum</i> . Biochemistry, 2012, 51, 4488-4498.	1.2	47
136	â€~ <i>Candidatus</i> Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum <i>Chlorobi</i> defined by metagenomics and metatranscriptomics. ISME Journal, 2012, 6, 1869-1882.	4.4	108
137	Identification of the Bacteriochlorophylls, Carotenoids, Quinones, Lipids, and Hopanoids of "Candidatus Chloracidobacterium thermophilum". Journal of Bacteriology, 2012, 194, 1158-1168.	1.0	65
138	Complete Genome of Ignavibacterium album, a Metabolically Versatile, Flagellated, Facultative Anaerobe from the Phylum Chlorobi. Frontiers in Microbiology, 2012, 3, 185.	1.5	168
139	Bacteriochlorophyll f: properties of chlorosomes containing the "forbidden chlorophyll― Frontiers in Microbiology, 2012, 3, 298.	1.5	49
140	Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions. Frontiers in Microbiology, 2012, 3, 354.	1.5	157
141	Isolation and Characterization of Homodimeric Type-I Reaction Center Complex from Candidatus Chloracidobacterium thermophilum, an Aerobic Chlorophototroph. Journal of Biological Chemistry, 2012, 287, 5720-5732.	1.6	42
142	Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. Advances in Photosynthesis and Respiration, 2012, , 47-102.	1.0	145
143	Complete genome of <i>Candidatus</i> Chloracidobacterium thermophilum, a chlorophyllâ€based photoheterotroph belonging to the phylum <i>Acidobacteria</i> . Environmental Microbiology, 2012, 14, 177-190.	1.8	79
144	Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically. Photosynthesis Research, 2012, 110, 153-168.	1.6	18

#	Article	IF	CITATIONS
145	Wiring photosystem I for electron transfer to a tethered redox dye. Energy and Environmental Science, 2011, 4, 2428.	15.6	5
146	Attachment of Noncognate Chromophores to CpcA of <i>Synechocystis</i> sp. PCC 6803 and <i>Synechococcus</i> sp. PCC 7002 by Heterologous Expression in <i>Escherichia coli</i> . Biochemistry, 2011, 50, 4890-4902.	1.2	53
147	Absorption Linear Dichroism Measured Directly on a Single Light-Harvesting System: The Role of Disorder in Chlorosomes of Green Photosynthetic Bacteria. Journal of the American Chemical Society, 2011, 133, 6703-6710.	6.6	53
148	Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiDâ,,¢) Sequencing of cDNA. Frontiers in Microbiology, 2011, 2, 41.	1.5	127
149	The Tricarboxylic Acid Cycle in Cyanobacteria. Science, 2011, 334, 1551-1553.	6.0	312
150	Large Improvements in MS/MS-Based Peptide Identification Rates using a Hybrid Analysis. Journal of Proteome Research, 2011, 10, 2306-2317.	1.8	19
151	Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Standards in Genomic Sciences, 2011, 5, 356-370.	1.5	47
152	Identification of a Gene Essential for the First Committed Step in the Biosynthesis of Bacteriochlorophyll c. Journal of Biological Chemistry, 2011, 286, 22393-22402.	1.6	27
153	Mechanisms and Evolution of Oxidative Sulfur Metabolism in Green Sulfur Bacteria. Frontiers in Microbiology, 2011, 2, 116.	1.5	206
154	Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 157-164.	0.5	26
155	Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME Journal, 2011, 5, 1262-1278.	4.4	206
156	Expression of Genes in Cyanobacteria: Adaptation of Endogenous Plasmids as Platforms for High-Level Gene Expression in Synechococcus sp. PCC 7002. Methods in Molecular Biology, 2011, 684, 273-293.	0.4	107
157	Elucidation of the Biosynthetic Pathway for Okenone in Thiodictyon sp. CAD16 Leads to the Discovery of Two Novel Carotene Ketolases. Journal of Biological Chemistry, 2011, 286, 38521-38532.	1.6	17
158	Ultrastructural Analysis and Identification of Envelope Proteins of "Candidatus Chloracidobacterium thermophilum" Chlorosomes. Journal of Bacteriology, 2011, 193, 6701-6711.	1.0	52
159	Effects of Modified Phycobilin Biosynthesis in the Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. Journal of Bacteriology, 2011, 193, 1663-1671.	1.0	37
160	Characterization of the Activities of the CpeY, CpeZ, and CpeS Bilin Lyases in Phycoerythrin Biosynthesis in Fremyella diplosiphon Strain UTEX 481. Journal of Biological Chemistry, 2011, 286, 35509-35521.	1.6	40
161	Multiple Types of 8-Vinyl Reductases for (Bacterio)Chlorophyll Biosynthesis Occur in Many Green Sulfur Bacteria. Journal of Bacteriology, 2011, 193, 4996-4998.	1.0	26
162	Synechococcussp. Strain PCC 7002nifJMutant Lacking Pyruvate:Ferredoxin Oxidoreductase. Applied and Environmental Microbiology, 2011, 77, 2435-2444.	1.4	38

#	Article	IF	CITATIONS
163	Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20988-20991.	3.3	156
164	Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME Journal, 2011, 5, 1279-1290.	4.4	101
165	Chapter 17. Wired Reaction Centers. RSC Energy and Environment Series, 2011, , 464-505.	0.2	2
166	Wiring Photosystem I for Direct Solar Hydrogen Production. Biochemistry, 2010, 49, 404-414.	1.2	143
167	Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Photosynthesis Research, 2010, 104, 201-209.	1.6	31
168	Expressionâ€based identification of genetic determinants of the bacterial symbiosis â€~ <i>Chlorochromatium aggregatum</i> '. Environmental Microbiology, 2010, 12, 2259-2276.	1.8	11
169	Cultivation and Genomic, Nutritional, and Lipid Biomarker Characterization of <i>Roseiflexus</i> Strains Closely Related to Predominant <i>In Situ</i> Populations Inhabiting Yellowstone Hot Spring Microbial Mats. Journal of Bacteriology, 2010, 192, 3033-3042.	1.0	100
170	Biosynthesis of Cyanobacterial Phycobiliproteins in <i>Escherichia coli</i> : Chromophorylation Efficiency and Specificity of All Bilin Lyases from <i>Synechococcus</i> sp. Strain PCC 7002. Applied and Environmental Microbiology, 2010, 76, 2729-2739.	1.4	70
171	Polyphasic Characterization of a Thermotolerant Siderophilic Filamentous Cyanobacterium That Produces Intracellular Iron Deposits. Applied and Environmental Microbiology, 2010, 76, 6664-6672.	1.4	53
172	Functional and Structural Characterization of the 2/2 Hemoglobin from <i>Synechococcus</i> sp. PCC 7002,. Biochemistry, 2010, 49, 7000-7011.	1.2	44
173	Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Archives of Biochemistry and Biophysics, 2010, 504, 86-99.	1.4	101
174	Phycobiliprotein Biosynthesis in Cyanobacteria: Structure and Function of Enzymes Involved in Post-translational Modification. Advances in Experimental Medicine and Biology, 2010, 675, 211-228.	0.8	58
175	Envelope Proteins of the CsmB/CsmF and CsmC/CsmD Motif Families Influence the Size, Shape, and Composition of Chlorosomes in <i>Chlorobaculum tepidum</i> . Journal of Bacteriology, 2009, 191, 7109-7120.	1.0	27
176	Alternating <i>syn-anti</i> bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8525-8530.	3.3	283
177	ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1122-1128.	0.5	97
178	Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum. Photosynthesis Research, 2009, 101, 21-34.	1.6	10
179	Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species. Archives of Microbiology, 2009, 191, 853-867.	1.0	43
180	The Biosynthetic Pathway for Myxol-2′ Fucoside (Myxoxanthophyll) in the Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. Journal of Bacteriology, 2009, 191, 3292-3300.	1.0	76

#	Article	IF	CITATIONS
181	Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum. PLoS ONE, 2009, 4, e4207.	1.1	113
182	The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynthesis Research, 2008, 97, 121-140.	1.6	101
183	Removal of the PsaF Polypeptide Biases Electron Transfer in Favor of the PsaB Branch of Cofactors in Triton Xâ€100 Photosystem I Complexes from <i>Synechococcus</i> sp. PCC 7002 ^{â€} . Photochemistry and Photobiology, 2008, 84, 1371-1380.	1.3	7
184	Transcription factor NtcB specifically controls the nitrate assimilation genes in the marine cyanobacterium <i>Synechococcus</i> sp. strain PCC 7002. Phycological Research, 2008, 56, 223-237.	0.8	5
185	Synechoxanthin, an Aromatic C40 Xanthophyll that Is a Major Carotenoid in the Cyanobacterium Synechococcus sp. PCC 7002. Journal of Natural Products, 2008, 71, 1647-1650.	1.5	45
186	Photosystem I/Molecular Wire/Metal Nanoparticle Bioconjugates for the Photocatalytic Production of H ₂ . Journal of the American Chemical Society, 2008, 130, 6308-6309.	6.6	135
187	Biogenesis of Phycobiliproteins. Journal of Biological Chemistry, 2008, 283, 7513-7522.	1.6	62
188	Biogenesis of Iron-Sulfur Clusters in Photosystem I. Journal of Biological Chemistry, 2008, 283, 28426-28435.	1.6	37
189	A new pheromone trail-based genetic algorithm for comparative genome assembly. Nucleic Acids Research, 2008, 36, 3455-3462.	6.5	28
190	Biogenesis of Phycobiliproteins. Journal of Biological Chemistry, 2008, 283, 7503-7512.	1.6	87
191	Isorenieratene Biosynthesis in Green Sulfur Bacteria Requires the Cooperative Actions of Two Carotenoid Cyclases. Journal of Bacteriology, 2008, 190, 6384-6391.	1.0	47
192	Identification of the <i>bchP</i> Gene, Encoding Geranylgeranyl Reductase in <i>Chlorobaculum tepidum</i> . Journal of Bacteriology, 2008, 190, 747-749.	1.0	23
193	The Biosynthetic Pathway for Synechoxanthin, an Aromatic Carotenoid Synthesized by the Euryhaline, Unicellular Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. Journal of Bacteriology, 2008, 190, 7966-7974.	1.0	77
194	Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria. Advances in Photosynthesis and Respiration, 2008, , 337-355.	1.0	51
195	SufR Coordinates Two [4Fe-4S]2+, 1+ Clusters and Functions as a Transcriptional Repressor of the sufBCDS Operon and an Autoregulator of sufR in Cyanobacteria. Journal of Biological Chemistry, 2007, 282, 31909-31919.	1.6	65
196	Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11784-11789.	3.3	82
197	Characterization of a Plant-like Protochlorophyllide a Divinyl Reductase in Green Sulfur Bacteria. Journal of Biological Chemistry, 2007, 282, 2967-2975.	1.6	59
198	Bacteriochlorophyllide c C-8 2 and C-12 1 Methyltransferases Are Essential for Adaptation to Low Light in Chlorobaculum tepidum. Journal of Bacteriology, 2007, 189, 6176-6184.	1.0	95

#	Article	IF	CITATIONS
199	Transcriptional Regulation of the CO 2 -Concentrating Mechanism in a Euryhaline, Coastal Marine Cyanobacterium, Synechococcus sp. Strain PCC 7002: Role of NdhR/CcmR. Journal of Bacteriology, 2007, 189, 3335-3347.	1.0	85
200	Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity. Annual Review of Microbiology, 2007, 61, 113-129.	2.9	249
201	Longâ€range organization of bacteriochlorophyll in chlorosomes of <i>Chlorobium tepidum</i> investigated by cryoâ€electron microscopy. FEBS Letters, 2007, 581, 5435-5439.	1.3	129
202	<i>Candidatus</i> Chloracidobacterium thermophilum: An Aerobic Phototrophic Acidobacterium. Science, 2007, 317, 523-526.	6.0	384
203	Triplet Exciton Formation as a Novel Photoprotection Mechanism in Chlorosomes of Chlorobium tepidum. Biophysical Journal, 2007, 93, 192-201.	0.2	32
204	Chemical rescue of a site-modified ligand to a [4Fe–4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 712-724.	0.5	39
205	Group 3 sigma factors in the marine cyanobacterium Synechococcus sp. strain PCC 7002 are required for growth at low temperature. Journal of General and Applied Microbiology, 2007, 53, 89-104.	0.4	15
206	Molecular Contacts for Chlorosome Envelope Proteins Revealed by Cross-Linking Studies with Chlorosomes from Chlorobium tepidum. Biochemistry, 2006, 45, 9095-9103.	1.2	42
207	Bacteriochlorophyll Biosynthesis in Green Bacteria. , 2006, , 201-221.		19
208	Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology, 2006, 14, 488-496.	3.5	470
209	Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiology Letters, 2006, 152, 313-320.	0.7	66
210	Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: Inactivation of ctaDI affects the PS I:PS II ratio. Photosynthesis Research, 2006, 87, 215-228.	1.6	44
211	Roles for heme–copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002. Archives of Microbiology, 2006, 185, 471-479.	1.0	55
212	Two Genes Encoding New Carotenoid-Modifying Enzymes in the Green Sulfur Bacterium Chlorobium tepidum. Journal of Bacteriology, 2006, 188, 6217-6223.	1.0	33
213	Regulatory Roles for IscA and SufA in Iron Homeostasis and Redox Stress Responses in the Cyanobacterium Synechococcus sp. Strain PCC 7002. Journal of Bacteriology, 2006, 188, 3182-3191.	1.0	88
214	Identification and Characterization of a New Class of Bilin Lyase. Journal of Biological Chemistry, 2006, 281, 17768-17778.	1.6	87
215	Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria. Microbiology Monographs, 2006, , 79-114.	0.3	94

216 Genetic Manipulation of Quinone Biosynthesis in Cyanobacteria. , 2006, , 205-222.

10

#	Article	IF	CITATIONS
217	Isolation and Characterization of Carotenosomes from a Bacteriochlorophyll c-less Mutant ofChlorobium tepidum. Photosynthesis Research, 2005, 86, 101-111.	1.6	34
218	Recruitment of a Foreign Quinone into the A1 Site of Photosystem I. Journal of Biological Chemistry, 2005, 280, 12371-12381.	1.6	34
219	Nine Mutants of Chlorobium tepidum Each Unable To Synthesize a Different Chlorosome Protein Still Assemble Functional Chlorosomes. Journal of Bacteriology, 2004, 186, 646-653.	1.0	69
220	The bchU Gene of Chlorobium tepidum Encodes the C-20 Methyltransferase in Bacteriochlorophyll c Biosynthesis. Journal of Bacteriology, 2004, 186, 2558-2566.	1.0	72
221	Genetic Manipulation of Carotenoid Biosynthesis in the Green Sulfur Bacterium Chlorobium tepidum. Journal of Bacteriology, 2004, 186, 5210-5220.	1.0	92
222	The sufR Gene (sll0088 in Synechocystis sp. Strain PCC 6803) Functions as a Repressor of the sufBCDS Operon in Iron-Sulfur Cluster Biogenesis in Cyanobacteria. Journal of Bacteriology, 2004, 186, 956-967.	1.0	81
223	Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Archives of Microbiology, 2004, 182, 265-276.	1.0	108
224	Gene Inactivation in the Cyanobacterium <1>Synechococcus sp. PCC 7002 and the Green Sulfur Bacterium <1>Chlorobium tepidum Using In Vitro-Made DNA Constructs and Natural Transformation. , 2004, 274, 325-340.		78
225	Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence. Photosynthesis Research, 2003, 78, 93-117.	1.6	158
226	Interaction of Ferredoxin:NADP+ Oxidoreductase with Phycobilisomes and Phycobilisome Substructures of the Cyanobacterium Synechococcus sp. Strain PCC 7002. Biochemistry, 2003, 42, 13800-13811.	1.2	53
227	The beauty in small things revealed. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9647-9649.	3.3	43
228	Suppressor Mutations in the Study of Photosystem I Biogenesis: sll0088 Is a Previously Unidentified Gene Involved in Reaction Center Accumulation in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 2003, 185, 3878-3887.	1.0	20
229	The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9509-9514.	3.3	362
230	Chlorobium tepidum Mutant Lacking Bacteriochlorophyll c Made by Inactivation of the bchK Gene, Encoding Bacteriochlorophyll c Synthase. Journal of Bacteriology, 2002, 184, 3368-3376.	1.0	70
231	Selective Protein Extraction fromChlorobium tepidumChlorosomes Using Detergents. Evidence That CsmA Forms Multimers and Binds Bacteriochlorophyllaâ€. Biochemistry, 2002, 41, 14403-14411.	1.2	59
232	Subcellular Localization of Chlorosome Proteins in Chlorobium tepidum and Characterization of Three New Chlorosome Proteins:  CsmF, CsmH, and CsmX. Biochemistry, 2002, 41, 4358-4370.	1.2	66
233	Assembly of Photosystem I. Journal of Biological Chemistry, 2002, 277, 20343-20354.	1.6	113
234	Assembly of Photosystem I. Journal of Biological Chemistry, 2002, 277, 20355-20366.	1.6	85

#	Article	IF	CITATIONS
235	Solution structure of the unbound, oxidized Photosystem I subunit PsaC, containing [4Fe-4S] clusters FA and FB: a conformational change occurs upon binding to Photosystem I. Journal of Biological Inorganic Chemistry, 2002, 7, 461-472.	1.1	32
236	Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme. Photosynthesis Research, 2002, 71, 69-81.	1.6	14
237	Synergistic effect of high-light and low temperature on cell growth of the Delta12 fatty acid desaturase mutant in Synechococcus sp. PCC 7002. Photosynthesis Research, 2002, 72, 231-242.	1.6	32
238	Photosystem stoichiometry and state transitions in a mutant of the cyanobacterium Synechococcus sp. PCC 7002 lacking phycocyanin. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1505, 248-257.	0.5	34
239	Electron Transfer May Occur in the Chlorosome Envelope: The CsmI and CsmJ Proteins of Chlorosomes Are 2Fe-2S Ferredoxinsâ€,‡. Biochemistry, 2001, 40, 464-473.	1.2	34
240	Requirement of Nickel as an Essential Micronutrient for the Utilization of Urea in the Marine Cyanobacterium Synechococcus sp. PCC 7002 Microbes and Environments, 2001, 16, 177-184.	0.7	24
241	Chromosomal Gene Inactivation in the Green Sulfur Bacterium Chlorobium tepidum by Natural Transformation. Applied and Environmental Microbiology, 2001, 67, 2538-2544.	1.4	87
242	Type IV pilus biogenesis and motility in the cyanobacteriumSynechocystissp. PCC6803. Molecular Microbiology, 2000, 37, 941-951.	1.2	226
243	Paramagnetic 1H NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed-and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA â ⁻² and FB â ⁻² . Journal of Biological Inorganic Chemistry, 2000. 5. 381-392.	1.1	26
244	Recruitment of a Foreign Quinone into the A1 Site of Photosystem I. Journal of Biological Chemistry, 2000, 275, 8523-8530.	1.6	123
245	Nitrate Transport and Not Photoinhibition Limits Growth of the Freshwater Cyanobacterium Synechococcus Species PCC 6301 at Low Temperature1. Plant Physiology, 1999, 119, 785-794.	2.3	37
246	A Novel Nitrate/Nitrite Permease in the Marine Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. Journal of Bacteriology, 1999, 181, 7363-7372.	1.0	75
247	Insertional inactivation studies of thecsmAandcsmCgenes of the green sulfur bacteriumChlorobium vibrioforme8327: the chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiology Letters, 1998, 164, 353-361.	0.7	20
248	Structure and properties in solution of PsaD, an extrinsic polypeptide of photosystem I. FEBS Journal, 1998, 255, 309-316.	0.2	19
249	Measurement of Photosystem I Activity with Photoreduction of Recombinant Flavodoxin. Analytical Biochemistry, 1998, 264, 263-270.	1.1	19
250	Deletion of the PsaF Polypeptide Modifies the Environment of the Redox-Active Phylloquinone (A1). Evidence for Unidirectionality of Electron Transfer in Photosystem I. Journal of Physical Chemistry B, 1998, 102, 8288-8299.	1.2	68
251	Growth on Urea Can Trigger Death and Peroxidation of the Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. Applied and Environmental Microbiology, 1998, 64, 2361-2366.	1.4	82
252	Expression of two alternative sigma factors of Synechococcus sp. strain PCC 7002 is modulated by carbon and nitrogen stress. Microbiology (United Kingdom), 1997, 143, 3807-3818.	0.7	42

#	Article	IF	CITATIONS
253	PsaE- and NdhF-mediated electron transport affect bicarbonate transport rather than carbon dioxide uptake in the cyanobacteriumSynechococcus sp. PCC7002. Planta, 1997, 201, 36-42.	1.6	25
254	Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Molecular Microbiology, 1997, 23, 1281-1292.	1.2	100
255	Interaction between Photosystem I and Flavodoxin from the Cyanobacterium Synechococcus sp. PCC 7002 as Revealed by Chemical Cross-Linking. FEBS Journal, 1996, 235, 324-331.	0.2	40
256	Characterization of <i>psal</i> and <i>psaL</i> Mutants of <i>Synechococcus</i> sp. Strain PCC 7002: A New Model for State Transitions in Cyanobacteria. Photochemistry and Photobiology, 1996, 64, 53-66.	1.3	104
257	Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynthesis Research, 1996, 50, 41-59.	1.6	29
258	Modified Ligands to FA and FB in Photosystem I. Journal of Biological Chemistry, 1996, 271, 31135-31144.	1.6	27
259	Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the Photosystem I reaction center core complex. Photosynthesis Research, 1995, 44, 41-53.	1.6	55
260	Evidence for a mixed-ligand [4Fe-4S] cluster in the C14D mutant of PsaC. Altered reduction potentials and EPR spectral properties of the FA and FB clusters on rebinding to the P700-FX core. Biochemistry, 1995, 34, 7861-7868.	1.2	50
261	Comparison of Calculated and Experimentally Resolved Rate Constants for Excitation Energy Transfer in C-Phycocyanin. 1. Monomers. The Journal of Physical Chemistry, 1995, 99, 8412-8419.	2.9	66
262	Comparison of Calculated and Experimentally Resolved Rate Constants for Excitation Energy Transfer in C-Phycocyanin. 2. Trimers. The Journal of Physical Chemistry, 1995, 99, 8420-8431.	2.9	76
263	Modified Ligands to FA and Fb in Photosystem I. Journal of Biological Chemistry, 1995, 270, 28108-28117.	1.6	43
264	Modified Ligands to FA and FB in Photosystem I. Journal of Biological Chemistry, 1995, 270, 28118-28125.	1.6	35
265	Gene nomenclature recommendations for green photosynthetic bacteria and heliobacteria. Photosynthesis Research, 1994, 41, 27-28.	1.6	24
266	Genes encoding two chlorosome components from the green sulfur bacteriaChlorobium vibrioforme strain 8327D andChlorobium tepidum. Photosynthesis Research, 1994, 41, 261-275.	1.6	51
267	Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: Assignment of excited state energies to the Lcm, β18 and αAP-B chromophores. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1186, 153-162.	0.5	74
268	Organization and transcription of the genes encoding two differentially expressed phycocyanins in the cyanobacterium Pseudanabaena sp. PCC 7409. Photosynthesis Research, 1993, 36, 169-183.	1.6	16
269	Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound PsaC mutants C14D and C51D. Midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of photosystem I. Biochemistry, 1993, 32, 8251-8258.	1.2	41
270	Monomeric C-phycocyanin at room temperature and 77 K: resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants. The Journal of Physical Chemistry, 1993, 97, 9852-9862.	2.9	77

#	Article	IF	CITATIONS
271	Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. FEBS Journal, 1992, 205, 907-915.	0.2	82
272	Site-directed conversion of a cysteine to aspartate leads to the assembly of a N iron-sulfur[3Fe-4S] cluster to PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry, 1992, 31, 5093-5099.	1.2	119
273	Molecular characterization of ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies on the gene product. Biochemistry, 1992, 31, 3092-3102.	1.2	155
274	Core mutations of Synechococcus sp. PCC 7002 phycobilisomes: A spectroscopic study. Journal of Photochemistry and Photobiology B: Biology, 1992, 15, 75-89.	1.7	47
275	Photosystem I. , 1991, , 83-177.		221
276	Cyanobacterial Phycobilisomes: Progress toward Complete Structural and Functional Analysis via Molecular Genetics. , 1991, , 257-300.		53
277	Structure and mutation of a gene encoding a Mr 33000 phycocyanin-associated linker polypeptide. Archives of Microbiology, 1990, 153, 541-549.	1.0	46
278	Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Archives of Microbiology, 1990, 153, 550-560.	1.0	55
279	The cyanelle genome ofCyanophora paradoxaencodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Letters, 1990, 259, 273-280.	1.3	42
280	Reconstitution of electron transport in photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Letters, 1990, 276, 175-180.	1.3	77
281	Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 29-41.	0.5	71
282	Analysis of Phycobilisome and Photosystem I Complexes of Cyanobacteria. , 1990, , 961-969.		4
283	Nucleotide sequence and expression of the two genes encoding D2 protein and the single gene encoding the CP43 protein of Photosystem II in the cyanobacterium synechococcus sp. PCC 7002. Photosynthesis Research, 1990, 24, 137-150.	1.6	19
284	Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 40-51.	0.5	58
285	State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 974, 66-73.	0.5	103
286	Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Molecular Biology, 1987, 9, 453-468.	2.0	107
287	Effects of Chromatic Illumination on Cyanobacterial Phycobilisomes. Evidence for the Specific Induction of a Second Pair of Phycocyanin Subunits in Pseudanabaena 7409 Grown in Red Light. FEBS Journal, 1981, 119, 415-424.	0.2	78
288	The Photoregulated Expression of Multiple Phycocyanin Species. A General Mechanism for the Control of Phycocyanin Synthesis is Chromatically Adapting Cyanobacteria. FEBS Journal, 1981, 119, 425-429.	0.2	85

#	Article	IF	CITATIONS
289	The structure of Gloeobacter violaceus and its phycobilisomes. Archives of Microbiology, 1981, 129, 181-189.	1.0	146
290	Characterization of the biliproteins of Gloeobacter violaceus chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Archives of Microbiology, 1981, 129, 190-198.	1.0	63
291	The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 1979, 123, 113-127.	1.0	344
292	Characterization and structural properties of the major biliproteins of Anabaena sp Archives of Microbiology, 1976, 110, 61-75.	1.0	203
293	The phylogenetic relationships of Chlorobium tepidum and Chloroflexus aurantiacus based upon their RecA sequences. , 0, .		1