
Zhumabay Bakenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8512922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
2	Ternary sulfur/polyacrylonitrile/Mg _{0.6} Ni _{0.4} O composite cathodes for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 295-301.	5.2	213
3	Rechargeable hybrid aqueous batteries. Journal of Power Sources, 2012, 216, 222-226.	4.0	197
4	A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors, 2020, 20, 5214.	2.1	186
5	Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. Journal of Power Sources, 2010, 195, 7445-7451.	4.0	148
6	Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochemistry Communications, 2010, 12, 75-78.	2.3	133
7	Defect-Rich Multishelled Fe-Doped Co ₃ O ₄ Hollow Microspheres with Multiple Spatial Confinements to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12763-12773.	4.0	129
8	One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. Journal of Power Sources, 2012, 208, 1-8.	4.0	121
9	High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochimica Acta, 2015, 152, 505-511.	2.6	118
10	High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 569, 22-33.	5.0	103
11	Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.	8.2	100
12	Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. Journal of Energy Chemistry, 2017, 26, 1276-1281.	7.1	97
13	A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Materials Today Energy, 2018, 9, 49-66.	2.5	92
14	Allâ€Purpose Electrode Design of Flexible Conductive Scaffold toward Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2020, 30, 2000613.	7.8	90
15	Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics, 2013, 234, 40-45.	1.3	86
16	Electrochemical performance of nanostructured LiMxMn2â^'xO4 (M=Co and Al) powders at high charge–discharge operations. Solid State Ionics, 2005, 176, 1027-1034.	1.3	79
17	Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Advanced Powder Technology, 2010, 21, 187-196.	2.0	72
18	Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technology, 2013, 235, 248-255.	2.1	72

#	Article	IF	CITATIONS
19	Highâ€Voltage Oxygenâ€Redoxâ€Based Cathode for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001111.	10.2	72
20	LiMg[sub x]Mn[sub 1â^'x]PO[sub 4]/C Cathodes for Lithium Batteries Prepared by a Combination of Spray Pyrolysis with Wet Ballmilling. Journal of the Electrochemical Society, 2010, 157, A430.	1.3	70
21	Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. Journal of Solid State Electrochemistry, 2014, 18, 1111-1116.	1.2	70
22	Effect of Graphene on Sulfur/Polyacrylonitrile Nanocomposite Cathode in High Performance Lithium/Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1194-A1198.	1.3	66
23	Synthesis of Hierarchical Porous Sulfur/Polypyrrole/Multiwalled Carbon Nanotube Composite Cathode for Lithium Batteries. Electrochimica Acta, 2014, 143, 49-55.	2.6	64
24	Nickel Hexacyanoferrate Nanoparticles as a Low Cost Cathode Material for Lithium-Ion Batteries. Electrochimica Acta, 2015, 184, 58-63.	2.6	64
25	In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries. Ceramics International, 2016, 42, 12371-12377.	2.3	62
26	Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography. Scientific Reports, 2016, 6, 35291.	1.6	61
27	Well-dispersed sulfur anchored on interconnected polypyrrole nanofiber network as high performance cathode for lithium-sulfur batteries. Solid State Sciences, 2017, 66, 44-49.	1.5	61
28	Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. Journal of Alloys and Compounds, 2021, 882, 160774.	2.8	55
29	Dual-network nanoporous NiFe2O4/NiO composites for high performance Li-ion battery anodes. Chemical Engineering Journal, 2020, 388, 124207.	6.6	54
30	Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. Journal of Materials Chemistry A, 2018, 6, 8558-8567.	5.2	52
31	A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries. Nanoscale Research Letters, 2015, 10, 450.	3.1	51
32	High performance freestanding composite cathode for lithium-sulfur batteries. Electrochimica Acta, 2016, 217, 242-248.	2.6	50
33	Effect of thickness and reaction media on properties of ZnO thin films by SILAR. Scientific Reports, 2022, 12, 851.	1.6	49
34	Three-dimensional carbon fiber as current collector for lithium/sulfur batteries. Ionics, 2014, 20, 803-808.	1.2	47
35	Morphology and Dimension Variations of Copper Sulfide for High-Performance Electrode in Rechargeable Batteries: A Review. ACS Applied Energy Materials, 2020, 3, 11480-11499.	2.5	46
36	Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: morphology and particle size effects. Electrochimica Acta, 2016, 216, 475-483.	2.6	44

#	Article	IF	CITATIONS
37	Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance. Journal of Power Sources, 2014, 270, 326-331.	4.0	43
38	Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries. Nanomaterials, 2018, 8, 50.	1.9	43
39	Synthesis of carbon coated Fe3O4 grown on graphene as effective sulfur-host materials for advanced lithium/sulfur battery. Journal of Power Sources, 2019, 437, 226901.	4.0	42
40	Bimodal nanoporous NiO@Ni–Si network prepared by dealloying method for stable Li-ion storage. Journal of Power Sources, 2020, 449, 227550.	4.0	42
41	A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries. Ionics, 2014, 20, 1047-1050.	1.2	41
42	P2-Na _{2/3} MnO ₂ by Co Incorporation: As a Cathode Material of High Capacity and Long Cycle Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28928-28933.	4.0	41
43	Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators. Nanoscale Research Letters, 2021, 16, 122.	3.1	40
44	A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte. Nanoscale Research Letters, 2014, 9, 137.	3.1	39
45	Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. Journal of Materials Chemistry A, 2021, 9, 15140-15178.	5.2	39
46	Prussian blue analogs derived Fe-Ni-P@nitrogen-doped carbon composites as sulfur host for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 595, 51-58.	5.0	38
47	Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries. Nanoscale Research Letters, 2017, 12, 459.	3.1	37
48	Synthesis of nitrogen-doped oxygen-deficient TiO2-x/reduced graphene oxide/sulfur microspheres via spray drying process for lithium-sulfur batteries. Electrochimica Acta, 2019, 326, 134968.	2.6	37
49	Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries. Electrochimica Acta, 2017, 258, 800-806.	2.6	36
50	Numerical study of integrated latent heat thermal energy storage devices using nanoparticle-enhanced phase change materials. Solar Energy, 2019, 194, 724-741.	2.9	36
51	Ultra-fine zinc oxide nanocrystals decorated three-dimensional macroporous polypyrrole inverse opal as efficient sulfur hosts for lithium/sulfur batteries. Chemical Engineering Journal, 2019, 375, 122055.	6.6	36
52	Nâ€Type Doped Silicon Thin Film on a Porous Cu Current Collector as the Negative Electrode for Liâ€lon Batteries. ChemistryOpen, 2018, 7, 92-96.	0.9	35
53	Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries. Ionics, 2016, 22, 1387-1393.	1.2	34
54	Rational Construction of Sulfur-Deficient NiCo ₂ S _{4–<i>x</i>} Hollow Microspheres as an Effective Polysulfide Immobilizer toward High-Performance Lithium/Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 1687-1695.	2.5	34

#	Article	IF	CITATIONS
55	Effect of graphene nanosheets on electrochemical performance of Li4Ti5O12 in lithium-ion capacitors. Ceramics International, 2017, 43, 6554-6562.	2.3	33
56	Spray pyrolysis synthesis of nanostructured LiFexMn2â [~] 'xO4 cathode materials for lithium-ion batteries. Powder Technology, 2005, 159, 55-62.	2.1	32
57	Porous carbon nanotubes microspheres decorated with strong catalyst cobalt nanoparticles as an effective sulfur host for lithium-sulfur battery. Journal of Alloys and Compounds, 2021, 853, 157268.	2.8	32
58	Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of the Electrochemical Society, 2019, 166, A5396-A5402.	1.3	31
59	Ultrathin clay-containing layer-by-layer separator coating enhances performance of lithium-sulfur batteries. Electrochimica Acta, 2021, 366, 137454.	2.6	30
60	Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources, 2017, 355, 140-146.	4.0	29
61	Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries. Nanomaterials, 2017, 7, 260.	1.9	29
62	Fabrication and Properties of Carbon-Encapsulated Cobalt Nanoparticles over NaCl by CVD. Nanoscale Research Letters, 2016, 11, 432.	3.1	28
63	Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries. Metals, 2018, 8, 252.	1.0	28
64	Nanoporous GeO2/Cu/Cu2O network synthesized by dealloying method for stable Li-ion storage. Electrochimica Acta, 2019, 300, 363-372.	2.6	28
65	Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	27
66	Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries. Journal of Materials Science and Technology, 2021, 74, 69-77.	5.6	27
67	Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance. Frontiers in Energy Research, 2020, 8, .	1.2	26
68	Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries. Ionics, 2016, 22, 63-69.	1.2	25
69	Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochimica Acta, 2018, 259, 647-654.	2.6	25
70	γ-Na _{0.96} V ₂ O ₅ : A New Competitive Cathode Material for Sodium-Ion Batteries Synthesized by a Soft Chemistry Route. Chemistry of Materials, 2018, 30, 5305-5314.	3.2	25
71	High performance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries. Ionics, 2015, 21, 1925-1930.	1.2	23
72	Hierarchical sandwiched Fe3O4@C/Graphene composite as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 847, 113240.	1.9	23

#	Article	IF	CITATIONS
73	Enhancing purity and ionic conductivity of NASICON-typed Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceramics International, 2021, 47, 18188-18195.	2.3	23
74	Sn modified nanoporous Ge for improved lithium storage performance. Journal of Colloid and Interface Science, 2021, 602, 563-572.	5.0	23
75	Synthesis of hierarchical MoS2 microspheres composed of nanosheets assembled via facile hydrothermal method as anode material for lithium-ion batteries. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	22
76	Sulfurâ€Infiltrated Threeâ€Dimensionally Ordered Mesoporous Polypyrrole Cathode for Highâ€Performance Lithiumâ€Sulfur Battery. ChemElectroChem, 2018, 5, 1591-1598.	1.7	22
77	Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries. Ionics, 2018, 24, 373-378.	1.2	22
78	Improving the cycling stability of three-dimensional nanoporous Ge anode by embedding Ag nanoparticles for high-performance lithium-ion battery. Journal of Colloid and Interface Science, 2021, 592, 103-115.	5.0	22
79	Development of a novel SiO 2 based composite anode material for Li-ion batteries. Materials Today: Proceedings, 2017, 4, 4542-4547.	0.9	21
80	Mechanistic Investigation of a Hybrid Zn/V ₂ O ₅ Rechargeable Battery with a Binary Li ⁺ /Zn ²⁺ Aqueous Electrolyte. ChemSusChem, 2020, 13, 724-731.	3.6	21
81	Battery performance of nanostructured lithium manganese oxide synthesized by ultrasonic spray pyrolysis at elevated temperature. Journal of Solid State Electrochemistry, 2007, 12, 57-62.	1.2	20
82	Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode. Polymers, 2018, 10, 853.	2.0	20
83	Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries. Materials Today Energy, 2020, 16, 100397.	2.5	20
84	Novel Ni/Ni2P@C hollow heterostructure microsphere as efficient sulfur hosts for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 871, 159576.	2.8	20
85	Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time. Scientific Reports, 2021, 11, 19287.	1.6	20
86	Defective ZnOx@porous carbon nanofiber network inducing dendrite-free zinc plating as zinc metal anode for high-performance aqueous rechargeable Zn/Na4Mn9O18 battery based on hybrid electrolyte. Journal of Power Sources, 2022, 518, 230761.	4.0	20
87	Photo and thermal crosslinked poly(vinyl alcohol)-based nanofiber membrane for flexible gel polymer electrolyte. Journal of Power Sources, 2022, 520, 230896.	4.0	20
88	3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a Highâ€Performance Anode for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 2359-2365.	1.7	19
89	Na4Mn9O18/Carbon Nanotube Composite as a High Electrochemical Performance Material for Aqueous Sodium-Ion Batteries. Nanoscale Research Letters, 2017, 12, 569.	3.1	19
90	Li1+xAlxTi2â^'x (PO4)3, NASICON-type solid electrolyte fabrication with different methods. Materials Today: Proceedings, 2020, 25, 97-100.	0.9	19

#	Article	IF	CITATIONS
91	Electrospun 3D Structured Carbon Current Collector for Li/S Batteries. Nanomaterials, 2020, 10, 745.	1.9	19
92	Physical Vapor Deposition of Cathode Materials for All Solid-State Li Ion Batteries: A Review. Frontiers in Energy Research, 2021, 9, .	1.2	19
93	Carbon/Sulfur Composite Cathodes for Flexible Lithium/Sulfur Batteries: Status and Prospects. Frontiers in Energy Research, 2015, 3, .	1.2	18
94	Examining the effect of nanosized Mg 0.6 Ni 0.4 O and Al 2 O 3 additives on S/polyaniline cathodes for lithium–sulphur batteries. Journal of Electroanalytical Chemistry, 2016, 780, 407-415.	1.9	18
95	Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries. Polymers, 2018, 10, 399.	2.0	18
96	Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries. Nanomaterials, 2018, 8, 69.	1.9	18
97	Flower-Like MoSe2/MoO2 Composite with High Capacity and Long-Term Stability for Lithium-Ion Battery. Nanomaterials, 2019, 9, 1256.	1.9	18
98	Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. Journal of Alloys and Compounds, 2021, 861, 157969.	2.8	18
99	Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery. Journal of Materials Science and Technology, 2021, 84, 124-132.	5.6	18
100	On using splitter plates and flow guide-vanes for battery module cooling. Heat and Mass Transfer, 2017, 53, 1-10.	1.2	17
101	Three-Dimensional Hierarchical Porous Structure of PPy/Porous-Graphene to Encapsulate Polysulfides for Lithium/Sulfur Batteries. Nanomaterials, 2018, 8, 606.	1.9	17
102	3D ordered macroporous amorphous Nb2O5 as anode material for high-performance sodium-ion batteries. Applied Surface Science, 2021, 567, 150862.	3.1	17
103	MoS 2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Materials Today: Proceedings, 2017, 4, 4567-4571.	0.9	16
104	CVD graphene growth on a surface of liquid gallium. Materials Today: Proceedings, 2017, 4, 4548-4554.	0.9	16
105	Stability of Lithium Polymer Battery Based on Substituted Spinel Cathode and PEG-Borate Esterâ^•PC Plasticized Polymer Electrolyte. Journal of the Electrochemical Society, 2005, 152, A1533.	1.3	15
106	The Electrochemical Performances of n-Type Extended Lattice Spaced Si Negative Electrodes for Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 389.	1.8	15
107	Understanding the effect of p-, n-type dopants and vinyl carbonate electrolyte additive on electrochemical performance of Si thin film anodes for lithium-ion battery. Electrochimica Acta, 2020, 330, 135179.	2.6	15
108	Synthesis of highly defective hollow double-shelled Co3O4â^'x microspheres as sulfur host for high-performance lithium-sulfur batteries. Materials Letters, 2019, 255, 126581.	1.3	14

#	Article	IF	CITATIONS
109	Nitrogenâ€Deficient Graphitic Carbon Nitride/Carbon Nanotube as Polysulfide Barrier of Highâ€Performance Lithiumâ€&ulfur Batteries. ChemElectroChem, 2020, 7, 4906-4912.	1.7	14
110	Design and preparation of thin film gel polymer electrolyte for 3D Li-ion battery. Journal of Power Sources, 2021, 493, 229686.	4.0	14
111	Three-dimensional foam-type current collectors for rechargeable batteries: A short review. Journal of Power Sources Advances, 2021, 10, 100065.	2.6	14
112	Fabrication of UV-Crosslinked Flexible Solid Polymer Electrolyte with PDMS for Li-Ion Batteries. Polymers, 2021, 13, 15.	2.0	14
113	Oxidized Nb2C MXene as catalysts for lithium-sulfur batteries: Mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides. Journal of Materials Science and Technology, 2022, 119, 45-52.	5.6	14
114	Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Materials Advances, 2022, 3, 3055-3069.	2.6	14
115	Building on a traditional chemical engineering curriculum using computational fluid dynamics. Education for Chemical Engineers, 2014, 9, e85-e93.	2.8	13
116	Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	13
117	Three-dimensionally ordered macro/mesoporous TiO ₂ matrix to immobilize sulfur for high performance lithium/sulfur batteries. Nanotechnology, 2018, 29, 415401.	1.3	13
118	NiCo2S4 nanoparticles embedded in nitrogen-doped carbon nanotubes networks as effective sulfur carriers for advanced Lithium–Sulfur batteries. Microporous and Mesoporous Materials, 2021, 316, 110924.	2.2	13
119	A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. Journal of Energy Chemistry, 2021, 61, 459-468.	7.1	13
120	In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. Journal of Power Sources, 2022, 520, 230902.	4.0	13
121	A Nonflammable Lithium Polymer Battery with High Performance for Elevated Temperature Applications. Electrochemical and Solid-State Letters, 2007, 10, A208.	2.2	12
122	Synthesis of spherical LiMnPO4/C composite microparticles. Materials Research Bulletin, 2011, 46, 1311-1314.	2.7	12
123	Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries. Materials, 2017, 10, 1102.	1.3	12
124	Flower-like Ni3S2 hollow microspheres as superior sulfur hosts for lithium-sulfur batteries. Microporous and Mesoporous Materials, 2021, 326, 111355.	2.2	12
125	Nitrogen-doped graphitized porous carbon with embedded NiFe alloy nanoparticles to enhance electrochemical performance for lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 882, 160728.	2.8	12
126	Carbon nanotubes assembled on porous TiO ₂ matrix doped with Co ₃ O ₄ as sulfur host for lithium–sulfur batteries. Nanotechnology, 2021, 32, 075403.	1.3	12

#	Article	IF	CITATIONS
127	Simple One-Pot Synthesis of Hexagonal ZnO Nanoplates as Anode Material for Lithium-Ion Batteries. Journal of Nanomaterials, 2016, 2016, 1-6.	1.5	11
128	Dual network porous Si/Al9FeSi3/Fe2O3 composite for high performance Li-ion battery anode. Electrochimica Acta, 2020, 358, 136936.	2.6	11
129	Rational design of MOFs-derived Fe3O4@C interwoven with carbon nanotubes as sulfur host for advanced lithium‑sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 877, 114608.	1.9	11
130	Hybrids of La2O3 nanoplates anchored in three-dimensional carbon nanotubes microspheres as efficient sulfur-hosts for highperformance lithium/sulfur batteries. Materials Letters, 2020, 270, 127690.	1.3	11
131	Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries. Journal of Materials Science and Technology, 2022, 115, 140-147.	5.6	11
132	Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries. Beilstein Journal of Nanotechnology, 2018, 9, 1677-1685.	1.5	10
133	Hierarchical Rambutanâ€Like CNTsâ€Assembled Nâ^'Coâ^'C@rGO Composite as Sulfur Immobilizer for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 4565-4570.	1.7	10
134	Tetrapropylammonium Hydroxide as a Zinc Dendrite Growth Suppressor for Rechargeable Aqueous Battery. Frontiers in Energy Research, 2020, 8, .	1.2	10
135	Synthesis of Multiwalled Carbon Nanotube Aqueous Suspension with Surfactant Sodium Dodecylbenzene Sulfonate for Lithium/Sulfur Rechargeable Batteries. Electrochemistry, 2016, 84, 7-11.	0.6	9
136	Gel polymer electrolytes for lithium-sulfur batteries. Materials Today: Proceedings, 2018, 5, 22882-22888.	0.9	9
137	Synthesis of Core-Shell Carbon Encapsulated Fe2O3 Composite through a Facile Hydrothermal Approach and Their Application as Anode Materials for Sodium-Ion Batteries. Metals, 2018, 8, 461.	1.0	9
138	A Novel Hierarchically Porous Polypyrrole Sphere Modified Separator for Lithium-Sulfur Batteries. Polymers, 2019, 11, 1344.	2.0	9
139	3D Hierarchical Nanocrystalline CuS Cathode for Lithium Batteries. Materials, 2021, 14, 1615.	1.3	9
140	LiMnPO4 Olivine as a Cathode for Lithium Batteries. Open Materials Science Journal, 2011, 5, 222-227.	0.2	9
141	High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries. Frontiers in Energy Research, 2015, 3, .	1.2	8
142	Effect of VO43â^'Substitution for PO43â^'on Electrical Conductivity in the Nasicon Li3Sc2(PO4)3Compound. Electrochimica Acta, 2015, 176, 327-333.	2.6	8
143	ZnO Nanorods Grown Directly on Copper Foil Substrate as a Binder-Free Anode for High Performance Lithium-Ion Batteries. International Journal of Electrochemical Science, 2016, , 8439-8446.	0.5	8
144	A simple approach to synthesize novel sulfur/graphene oxide/multiwalled carbon nanotube composite cathode for high performance lithium/sulfur batteries. Ionics, 2016, 22, 1819-1827.	1.2	8

#	Article	IF	CITATIONS
145	Effect of VO43â^' substitution for PO43â^' on electrochemical properties of the Li3Fe2(PO4)3 cathode materials. Electrochimica Acta, 2016, 219, 547-552.	2.6	8
146	Promoting polysulfides redox conversion by sulfur-deficient ZnS1 hollow polyhedrons for lithium-sulfur batteries. Materials and Design, 2021, 210, 110060.	3.3	8
147	Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Nanomaterials, 2022, 12, 2188.	1.9	8
148	Lithium AlPO4 composite polymer battery with nanostructured LiMn2O4 cathode. Journal of Solid State Electrochemistry, 2008, 12, 295-302.	1.2	7
149	Electrodeposited Ni-Sn intermetallic alloy electrode for 3D sulfur battery. Materials Today: Proceedings, 2017, 4, 4491-4495.	0.9	7
150	Synthesis of Carbon Nanotubes on a Shungite Substrate and Their Use for Lithium–Sulfur Batteries. Journal of Engineering Physics and Thermophysics, 2018, 91, 1295-1301.	0.2	7
151	Synthesis of microflower-like vacancy defective copper sulfide/reduced graphene oxide composites for highly efficient lithium-ion batteries. Nanotechnology, 2020, 31, 095405.	1.3	6
152	Three-Dimensionally Ordered Macroporous ZnO Framework as Dual-Functional Sulfur Host for High-Efficiency Lithium–Sulfur Batteries. Nanomaterials, 2020, 10, 2267.	1.9	6
153	High Mass-Loading Sulfur-Composite Cathode for Lithium-Sulfur Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	6
154	Mulberry-like hollow rGO microspheres decorated with CoO nanoparticles as efficient polysulfides anchoring for Li-S batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114375.	1.9	6
155	Revisiting the carbon mesopore contribution towards improved performance of ionic liquid–based EDLCs at sub-zero temperatures. Ionics, 2022, 28, 893-901.	1.2	6
156	Biomass-Derived Porous Carbon from Agar as an Anode Material for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 22.	1.9	6
157	Electrochemical Performance of Lithium Polymer Battery Based on PC/Polymer Borate Ester Plasticizers. Electrochemical and Solid-State Letters, 2005, 8, A30.	2.2	5
158	Li _{2.0} Ni _{0.67} N, a Promising Negative Electrode Material for Li-Ion Batteries with a Soft Structural Response. Inorganic Chemistry, 2017, 56, 13815-13821.	1.9	5
159	Facile Synthesis of Binder-Free Three-Dimensional CuxS Nanoflowers for Lithium Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	4
160	Nanoscale thermal transport and elastic properties of lithiated amorphous Si thin films. Materials Today: Proceedings, 2020, 25, 88-92.	0.9	4
161	NiCo2S4 Nanocrystals on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 2021, 16, 105.	3.1	4
162	Engineering zwitterionic barrier by squaraine-based porous organic framework fiber for superior lithium-sulfur batteries. Electrochimica Acta, 2021, 397, 139276.	2.6	4

#	Article	IF	CITATIONS
163	Application of Response Surface Methodology for Optimization of Nanosized Zinc Oxide Synthesis Conditions by Electrospinning Technique. Nanomaterials, 2022, 12, 1733.	1.9	4
164	Preparation of LiNi0.5Mn1.5O4 Cathode Materials of Lithium-Ion Batteries by Drip Pyrolysis in Fluidized Bed Reactor Followed by Heat Treatment and Their Electrochemical Properties. Journal of Chemical Engineering of Japan, 2011, 44, 179-186.	0.3	3
165	Synthesis and Characterization of Silicon Based Anode Materials. Materials Today: Proceedings, 2017, 4, 4502-4511.	0.9	3
166	N-type doped amorphous Si thin film on a surface of rough current collector as anode for Li-ion batteries. Materials Today: Proceedings, 2018, 5, 22759-22763.	0.9	3
167	Allâ€Purpose Electrodes: Allâ€Purpose Electrode Design of Flexible Conductive Scaffold toward Highâ€Performance Li–S Batteries (Adv. Funct. Mater. 19/2020). Advanced Functional Materials, 2020, 30, 2070123.	7.8	3
168	Rational design of a cobalt sulfide nanoparticle-embedded flexible carbon nanofiber membrane electrocatalyst for advanced lithium–sulfur batteries. Nanotechnology, 2021, 32, 455703.	1.3	3
169	Assessment of a Shallow Water Model using a Linear Turbulence Model for Obstruction-Induced Discontinuous Flows. Eurasian Chemico-Technological Journal, 2015, 14, 155.	0.3	3
170	A new step in the development of Zn/LiFePO 4 aqueous battery. Materials Today: Proceedings, 2017, 4, 4452-4457.	0.9	2
171	Thiol-modified activated carbon material for sensor technology. Materials Today: Proceedings, 2017, 4, 4599-4602.	0.9	2
172	Synthesis of ZnO/Polypyrrole Nanoring Composite as High-Performance Anode Materials for Lithium Ion Batteries. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	2
173	Suppression of zinc dendrite formation on anode of Zn/LiFePO4 aqueous rechargeable batteries using electrodeposition. Materials Today: Proceedings, 2020, 25, 93-96.	0.9	2
174	PAM-based hydrogel electrolyte for hybrid rechargeable aqueous (Zn and Li-ion) battery. Materials Today: Proceedings, 2022, 49, 2491-2494.	0.9	2
175	Spray-Pyrolysis Preparation of Li4Ti5O12/Si Composites for Lithium-Ion Batteries. Eurasian Chemico-Technological Journal, 2019, , 69.	0.3	2
176	SYNTHESIS OF NANOSTRUCTURED LiM0.15Mn1.85O4(MÂ=ÂMn, Co, Al, AND Fe) PARTICLES BY SPRAY PYROLYSI IN A FLUIDIZED BED REACTOR. Chemical Engineering Communications, 2008, 195, 1292-1301.	S _{1.5}	1
177	3D intermetallic anodes for Lithium-ion batteries. Materials Today: Proceedings, 2018, 5, 22877-22881.	0.9	1
178	Evaluating Sulfur-Composite Cathode Material with Lithiated Graphite Anode in Coin Cell and Pouch Cell Configuration. Frontiers in Energy Research, 2020, 8, .	1.2	1
179	Onion-Structured Si Anode Constructed with Coating by Li4Ti5O12 and Cyclized-Polyacrylonitrile for Lithium-Ion Batteries. Nanomaterials, 2020, 10, 1995.	1.9	1
180	Thermal stability and reduction mechanism of LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 cathode materials studied by a Temperature Programmed Reduction. Thermochimica Acta, 2021, 706, 179069.	1.2	1

#	Article	IF	CITATIONS
181	Advanced Numerical Solver for Dam-Break Flow Application. Eurasian Chemico-Technological Journal, 2015, 14, 73.	0.3	1
182	High Performance Metal Sulfide Electrode for Lithium Battery. ECS Meeting Abstracts, 2020, MA2020-01, 300-300.	0.0	1
183	PROSPECTS FOR CREATING A FULL CYCLE OF LITHIUM PRODUCTION IN KAZAKHSTAN – FROM ORE PROCESSING TO LITHIUM BATTERIES. Series Chemistry and Technology, 2020, 5, 38-45.	0.1	1
184	High Performance Metal Sulfide Electrode for Lithium Battery. ECS Meeting Abstracts, 2020, MA2020-02, 256-256.	0.0	1
185	Solid-State Nanobatteries. ACS Symposium Series, 0, , 201-248.	0.5	1
186	Synthesis and Electrochemical Performance of Polypyrrole-Coated Sulfur/Multi-Walled Carbon Nanotube Composite Cathode Materials for Lithium/Sulfur Batteries. Materials Science Forum, 0, 847, 33-38.	0.3	0
187	Effectiveness of a Helix Tube to Water Cool a Battery Module. , 0, , .		0
188	Development of a novel gel-like composite polymer separator for 3D Zn/LiFePO4 aqueous hybrid ion battery. Materials Today: Proceedings, 2018, 5, 22871-22876.	0.9	0
189	Editorial Preface on the Proceedings of the 5th International Conference on Nanomaterials and Advanced Energy Storage Systems, INESS-2017. Materials Today: Proceedings, 2018, 5, 22735-22740.	0.9	0
190	Editorial: Energy Storage Systems Beyond Li-Ion Intercalation Chemistry. Frontiers in Energy Research, 2021, 9, .	1.2	0
191	Effect of Additions of Organic Sulfonates on the Conductivity of Lithium Conducting Polymer Electrolytes. Electrochemistry, 2001, 69, 312-313.	0.6	0
192	Temperature Responsive Composite Gel-Polymer Electrolytes for Lithium-Sulfur Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
193	Ni3Sn4 Based Anode Materials for Three-Dimensional Lithium/Sulfur Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
194	Effect of Antifreeze Additives on Low Temperature Performance of Lithium-Ion Aqueous Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
195	Development of a Novel Quartz (SiO2) Based Composite Anode Material for Li-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
196	High Performance Sulfur-Composite Cathode for Lithium-Ion Sulfur Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
197	Development of the Next Generation Anode Materials for Super-Efficient Lithium-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
198	Flow-Assist Free Zn/NiOOH Battery Prepared By Electrodeposition. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
199	Solid Electrolytes for Thin Film Li-Ion Batteries with Novel Si and SiC Based Anodes. ECS Meeting Abstracts, 2017, , .	0.0	0
200	Graphene Coated Ni Foam As a Current Collector for N-Type Doped Si Thin Film Anode for Li-Ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
201	Development of Three-Dimensional Ni-Sn Anodes for Lithium-Ion Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
202	Novel Li4Ti5O12/Si/c-PAN Composite Anode for Lithium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
203	Mastering of Particle Size and Morphology of the Puckered Layer γ'-V2O5 Polymorph for Enhanced Na Electrochemical Properties. ECS Meeting Abstracts, 2019, , .	0.0	0
204	Development of Modified Silicon Nanoparticles for Energy Storage. ECS Meeting Abstracts, 2020, MA2020-01, 62-62.	0.0	0
205	Tailoring Electrolyte for Lithium-Ion Batteries Operating at Low Temperature. ECS Meeting Abstracts, 2021, MA2021-02, 1898-1898.	0.0	0
206	Fabrication of Freestanding Flexible Electrode Based on PEDOT:PSS Polymer Composite for Li – S Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 1887-1887.	0.0	0
207	Prevention of Reduction in Nasicon-Type Solid Electrolyte By Thin Polymer Coating. ECS Meeting Abstracts, 2021, MA2021-02, 12-12.	0.0	0
208	Preparation of Ni-Sn Alloy-Type Anode by Electrospinning. ECS Meeting Abstracts, 2021, MA2021-02, 309-309.	0.0	0
209	Electrochemical Properties of Sn and Cu Multilayered Thin Films for Li Ion Battery Anodes. ECS Meeting Abstracts, 2021, MA2021-02, 308-308.	0.0	0
210	A Study of Ni-Doping Effects in Na2Mn3-XNixO7 Layered Cathode for Sodium-Ion Battery. ECS Meeting Abstracts, 2021, MA2021-02, 1829-1829.	0.0	0
211	Lightweight 3D Structured Carbon Nanofiber Current Collector for Li/S Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1143-1143.	0.0	0
212	High Mass-Loading Sulfur-Composite Cathode for Lithium-Sulfur Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 282-282.	0.0	0
213	Fabrication and Characterization of Electrospun Pvam/TEOS Based Gel Polymer Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 832-832.	0.0	0
214	Modified Silicon Nanoparticles As an Anode for Lithium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 118-118.	0.0	0
215	Composite Paam-Based Hydrogel Electrolyte for Hybrid Aqueous (Zn-Li-ion) Battery. ECS Meeting Abstracts, 2020, MA2020-02, 703-703.	0.0	0
216	Application of Thin Film As Polymer Gel Electrolyte for 3D Li-Ion Battery. ECS Meeting Abstracts, 2020, MA2020-02. 3800-3800.	0.0	0

#	Article	IF	CITATIONS
217	Effect of Tetrapropyl Ammonium Hydroxide on Zn Dendrite Formation for Rechargeable Aqueous Battery. ECS Meeting Abstracts, 2021, MA2021-02, 1890-1890.	0.0	0
218	Bio-Derived Porous Carbon from Agar as an Anode Material for Lithium-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 304-304.	0.0	0
219	Advanced Battery Materials Research at Nazarbayev University: Review. Eurasian Chemico-Technological Journal, 2021, 23, 199.	0.3	0
220	3D Sn-Based Anodes for Solid State Rechargeable Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 944-944.	0.0	0