
Francesco Scotognella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8512796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Physics Reports, 2017, 674, 1-52.	10.3	252
2	Stacking the Nanochemistry Deck: Structural and Compositional Diversity in Oneâ€Dimensional Photonic Crystals. Advanced Materials, 2009, 21, 1641-1646.	11.1	223
3	Continuous-wave upconverting nanoparticle microlasers. Nature Nanotechnology, 2018, 13, 572-577.	15.6	188
4	Plasmon Dynamics in Colloidal Cu _{2–<i>x</i>} Se Nanocrystals. Nano Letters, 2011, 11, 4711-4717.	4.5	158
5	Cu _{3-<i>x</i>} P Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions. Chemistry of Materials, 2015, 27, 1120-1128.	3.2	137
6	Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures. Optical Materials, 2017, 72, 403-421.	1.7	120
7	Ï€-Extended Pyrene-Fused Double [7]Carbohelicene as a Chiral Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2019, 141, 12797-12803.	6.6	113
8	Nanoparticle Oneâ€Ðimensional Photonicâ€Crystal Dye Laser. Small, 2009, 5, 2048-2052.	5.2	85
9	Plasmonics in heavily-doped semiconductor nanocrystals. European Physical Journal B, 2013, 86, 1.	0.6	76
10	Charge Photogeneration in Few‣ayer MoS ₂ . Advanced Functional Materials, 2015, 25, 3351-3358.	7.8	76
11	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	7.2	72
12	Self-Assembled Hierarchical Nanostructures for High-Efficiency Porous Photonic Crystals. ACS Nano, 2014, 8, 12167-12174.	7.3	71
13	Lasing from all-polymer microcavities. Laser Physics Letters, 2014, 11, 035804.	0.6	65
14	Room-Temperature Low-Threshold Lasing from Monolithically Integrated Nanostructured Porous Silicon Hybrid Microcavities. ACS Nano, 2018, 12, 4536-4544.	7.3	51
15	Hybrid One-Dimensional Plasmonic–Photonic Crystals for Optical Detection of Bacterial Contaminants. Journal of Physical Chemistry Letters, 2019, 10, 4980-4986.	2.1	50
16	Distributed Feedback Lasing from a Composite Poly(phenylene vinylene)â^'Nanoparticle One-Dimensional Photonic Crystal. Nano Letters, 2009, 9, 4273-4278.	4.5	48
17	Ultrafast Photodoping and Plasmon Dynamics in Fluorine–Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths. Journal of Physical Chemistry Letters, 2016, 7, 3873-3881.	2.1	46
18	Simultaneous Tenfold Brightness Enhancement and Emittedâ€Light Spectral Tunability in Transparent Ambipolar Organic Lightâ€Emitting Transistor by Integration of Highâ€ <i>k</i> Photonic Crystal. Advanced Functional Materials, 2017, 27, 1605164.	7.8	45

#	Article	IF	CITATIONS
19	Disorder in Photonic Structures Induced by Random Layer Thickness. Science of Advanced Materials, 2015, 7, 1207-1212.	0.1	42
20	Colloidal Bi-Doped Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ Nanocrystals: Undercoordinated Surface Cl Ions Limit their Light Emission Efficiency. , 2020, 2, 1442-1449.		41
21	DFB laser action in a flexible fully plastic multilayer. Physical Chemistry Chemical Physics, 2010, 12, 337-340.	1.3	40
22	Solution processable and optically switchable 1D photonic structures. Scientific Reports, 2018, 8, 3517.	1.6	38
23	Low-Voltage Tuning in a Nanoparticle/Liquid Crystal Photonic Structure. Journal of Physical Chemistry C, 2012, 116, 21572-21576.	1.5	37
24	Two-Photon Poly(phenylenevinylene) DFB Laser. Chemistry of Materials, 2011, 23, 805-809.	3.2	36
25	Pump–Push–Probe for Ultrafast Allâ€Optical Switching: The Case of a Nanographene Molecule. Advanced Functional Materials, 2019, 29, 1805249.	7.8	34
26	One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers. International Journal of Photoenergy, 2008, 2008, 1-4.	1.4	33
27	Ultrafast Charge Photogeneration in Semiconducting Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 10849-10855.	1.5	33
28	Near-infrared emitting single squaraine dye aggregates with large Stokes shifts. Journal of Materials Chemistry C, 2017, 5, 7732-7738.	2.7	32
29	Hybrid Photonic Nanostructures by In Vivo Incorporation of an Organic Fluorophore into Diatom Algae. Advanced Functional Materials, 2018, 28, 1706214.	7.8	31
30	High energetic excitons in carbon nanotubes directly probe charge-carriers. Scientific Reports, 2015, 5, 9681.	1.6	30
31	Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceramics International, 2015, 41, 8655-8659.	2.3	30
32	Electro-optic and magneto-optic photonic devices based on multilayer photonic structures. Journal of Photonics for Energy, 2018, 8, 1.	0.8	29
33	Coherent emission from fully Er3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering. Optical Materials, 2019, 87, 107-111.	1.7	27
34	Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal. Beilstein Journal of Nanotechnology, 2016, 7, 1404-1410.	1.5	25
35	Excited state photophysics of squaraine dyes for photovoltaic applications: an alternative deactivation scenario. Journal of Materials Chemistry C, 2018, 6, 2778-2785.	2.7	25
36	Nearâ€Infrared Lasing in Fourâ€Zigzag Edged Nanographenes by 1D versus 2D Electronic Ï€â€Conjugation. Advanced Functional Materials, 2021, 31, 2105073.	7.8	25

FRANCESCO SCOTOGNELLA

#	Article	IF	CITATIONS
37	One dimensional disordered photonic structures characterized by uniform distributions of clusters. Optical Materials, 2015, 39, 235-238.	1.7	23
38	Modulation of the Nonlinear Optical Properties of Dibenzo[<i>hi</i> , <i>st</i>]ovalene by Peripheral Substituents. Journal of Physical Chemistry C, 2018, 122, 25007-25013.	1.5	23
39	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie, 2017, 129, 6857-6861.	1.6	18
40	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics. Advanced Optical Materials, 2021, 9, 2100508.	3.6	18
41	Four-material one dimensional photonic crystals. Optical Materials, 2012, 34, 1610-1613.	1.7	16
42	Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control. APL Photonics, 2020, 5, 080901.	3.0	16
43	Plasmonic Heavily-Doped Semiconductor Nanocrystal Dielectrics: Making Static Photonic Crystals Dynamic. Journal of Physical Chemistry C, 2015, 119, 2775-2782.	1.5	14
44	Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials, 2020, 10, 1525.	1.9	14
45	Integration of bio-responsive silver in 1D photonic crystals: towards the colorimetric detection of bacteria. Faraday Discussions, 2020, 223, 125-135.	1.6	14
46	Infiltration of E7 Liquid Crystal in a Nanoparticle-Based Multilayer Photonic Crystal: Fabrication and Electro-optical Characterization. Molecular Crystals and Liquid Crystals, 2013, 572, 31-39.	0.4	13
47	Stimuli-Responsive Photonic Crystals. Applied Sciences (Switzerland), 2021, 11, 2119.	1.3	13
48	Electro-responsivity in electrolyte-free and solution processed Bragg stacks. Journal of Materials Chemistry C, 2020, 8, 13019-13024.	2.7	12
49	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	6.4	12
50	Large scale indium tin oxide (ITO) one dimensional gratings for ultrafast signal modulation in the visible spectral region. Physical Chemistry Chemical Physics, 2020, 22, 6881-6887.	1.3	11
51	Light transmission behaviour as a function of the homogeneity in one dimensional photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 126-130.	1.0	10
52	Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration. Chemical Science, 2020, 11, 12816-12821.	3.7	10
53	A Polymer Blend Substrate for Skeletal Muscle Cells Alignment and Photostimulation. Advanced Photonics Research, 2021, 2, 2000103.	1.7	10
54	Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning. APL Photonics, 2021, 6, .	3.0	10

#	Article	IF	CITATIONS
55	Regioselective Hydrogenation of a 60-Carbon Nanographene Molecule toward a Circumbiphenyl Core. Journal of the American Chemical Society, 2019, 141, 4230-4234.	6.6	9
56	Engineering of the spin on dopant process on silicon on insulator substrate. Nanotechnology, 2021, 32, 025303.	1.3	9
57	Highly integrated lab-on-a-chip for fluorescence detection. Optical Engineering, 2016, 55, 097102.	0.5	8
58	The impact of bacteria exposure on the plasmonic response of silver nanostructured surfaces. Chemical Physics Reviews, 2021, 2, .	2.6	8
59	Anisotropic Complex Refractive Indices of Atomically Thin Materials: Determination of the Optical Constants of Few-Layer Black Phosphorus. Materials, 2020, 13, 5736.	1.3	6
60	Indium Tin Oxide Nanoparticle: TiO2: Air Layers for One-Dimensional Multilayer Photonic Structures. Applied Sciences (Switzerland), 2019, 9, 2564.	1.3	5
61	Bringing the interaction of silver nanoparticles with bacteria to light. Biophysics Reviews, 2021, 2, 021304.	1.0	5
62	Modelling and fabrication of one-dimensional flexible multilayer photonic crystals based on polymers and inorganic materials. Optical Materials, 2022, 123, 111859.	1.7	5
63	Light-induced switching in pDTE–FICO 1D photonic structures. Optics Communications, 2018, 410, 703-706.	1.0	4
64	Design of 1D photonic crystals for colorimetric and ratiometric refractive index sensing. Optical Materials: X, 2020, 8, 100058.	0.3	4
65	Effective medium optical modelling of indium tin oxide nanocrystal films. Physical Chemistry Chemical Physics, 2022, 24, 5317-5322.	1.3	4
66	Field-Induced Stimulated Emission in a Polymer–Liquid Crystal Mixture. Journal of Physical Chemistry C, 2015, 119, 23632-23637.	1.5	2
67	Optical properties of recent non-fullerene molecular acceptors for bulk heterojunction solar cells. Results in Physics, 2020, 19, 103633.	2.0	2
68	Ultrafast photochromism and bacteriochromism in one dimensional hybrid plasmonic photonic structures. , 2020, , .		2
69	Structural color tuning in a Ag/TiO ₂ nanoparticle one-dimensional photonic crystal induced by electric field. Proceedings of SPIE, 2017, , .	0.8	0
70	MaPBI3 and 2D hybrid organic-inorganic perovskite based microcavities employing periodic, aperiodic, and disordered photonic structures with light-induced tuning possibility. Optical Materials: X, 2021, 12, 100105.	0.3	0
71	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics (Advanced Optical Materials 23/2021). Advanced Optical Materials, 2021, 9, 2170095.	3.6	0
72	Calculated optical properties of donor molecules based on benzo[1,2-b:4,5-b′]dithiophene and its derivatives. AIP Advances, 2021, 11, 125001.	0.6	0

#	Article	IF	CITATIONS
73	Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene–Dye Nanohybrid. Journal of Physical Chemistry C, 2022, 126, 3569-3581.	1.5	0