Kristoffer Lihme Egerod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8512769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR41/FFAR3 and GPR43/FFAR2 as Cosensors for Short-Chain Fatty Acids in Enteroendocrine Cells vs FFAR3 in Enteric Neurons and FFAR2 in Enteric Leukocytes. Endocrinology, 2013, 154, 3552-3564.	1.4	436
2	GPR39 Signaling Is Stimulated by Zinc Ions But Not by Obestatin. Endocrinology, 2007, 148, 13-20.	1.4	371
3	A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin. Endocrinology, 2012, 153, 5782-5795.	1.4	269
4	Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Molecular Metabolism, 2013, 2, 376-392.	3.0	261
5	Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 2015, 290, 126-137.	1.1	192
6	Enterochromaffin 5-HT cells – A major target for GLP-1 and gut microbial metabolites. Molecular Metabolism, 2018, 11, 70-83.	3.0	160
7	A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells. Cell Metabolism, 2008, 8, 447-449.	7.2	128
8	Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular Metabolism, 2018, 12, 62-75.	3.0	124
9	Enteroendocrine cell types revisited. Current Opinion in Pharmacology, 2013, 13, 912-921.	1.7	123
10	Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism. Endocrinology, 2016, 157, 176-194.	1.4	119
11	Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nature Biotechnology, 2020, 38, 1265-1273.	9.4	114
12	In Vivo Characterization of High Basal Signaling from the Ghrelin Receptor. Endocrinology, 2009, 150, 4920-4930.	1.4	105
13	Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9808-9813.	3.3	86
14	Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nature Communications, 2019, 10, 2889.	5.8	84
15	G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction. Endocrinology, 2009, 150, 2577-2585.	1.4	82
16	GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology, 2016, 157, 4561-4569.	1.4	77
17	GPR39 Splice Variants Versus Antisense Gene LYPD1: Expression and Regulation in Gastrointestinal Tract, Endocrine Pancreas, Liver, and White Adipose Tissue. Molecular Endocrinology, 2007, 21, 1685-1698.	3.7	76
18	The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration. Cellular Signalling, 2015, 27, 2579-2588.	1.7	61

Kristoffer Lihme Egerod

#	Article	IF	CITATIONS
19	A genetic map of the mouse dorsal vagal complex and its role in obesity. Nature Metabolism, 2021, 3, 530-545.	5.1	60
20	Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells. Endocrinology, 2015, 156, 3909-3923.	1.4	56
21	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.3	54
22	Deficiency of the GPR39 receptor is associated with obesity and altered adipocyte metabolism. FASEB Journal, 2011, 25, 3803-3814.	0.2	45
23	Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis. Journal of Pathology, 2012, 227, 94-105.	2.1	45
24	<i>MTNR1B</i> G24E Variant Associates With BMI and Fasting Plasma Glucose in the General Population in Studies of 22,142 Europeans. Diabetes, 2010, 59, 1539-1548.	0.3	43
25	The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Molecular Metabolism, 2019, 19, 49-64.	3.0	43
26	Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine. Gastroenterology, 2018, 155, 1164-1176.e2.	0.6	41
27	Research Resource: A Chromogranin A Reporter for Serotonin and Histamine Secreting Enteroendocrine Cells. Molecular Endocrinology, 2015, 29, 1658-1671.	3.7	39
28	Differential effects of repeated low dose treatment with the cannabinoid agonist WIN 55,212-2 in experimental models of bone cancer pain and neuropathic pain. Pharmacology Biochemistry and Behavior, 2008, 91, 38-46.	1.3	35
29	GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness. Journal of Endocrinology, 2016, 228, 39-48.	1.2	35
30	Molecular identification of the first insect proctolin receptor. Biochemical and Biophysical Research Communications, 2003, 306, 437-442.	1.0	34
31	Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature Communications, 2020, 11, 4458.	5.8	34
32	The MicroRNA Repertoire in Enteroendocrine Cells: Identification of miR-375 as a Potential Regulator of the Enteroendocrine Lineage. Endocrinology, 2015, 156, 3971-3983.	1.4	29
33	Model-Based Discovery of Synthetic Agonists for the Zn ²⁺ -Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions. Journal of Medicinal Chemistry, 2017, 60, 886-898.	2.9	29
34	Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E453-E463.	1.8	29
35	Amino acids differ in their capacity to stimulate GLP-1 release from the perfused rat small intestine and stimulate secretion by different sensing mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E874-E885.	1.8	25
36	Risperidone Treatment Increases CB ₁ Receptor Binding in Rat Brain. Neuroendocrinology, 2010, 91, 155-168.	1.2	24

Kristoffer Lihme Egerod

#	Article	IF	CITATIONS
37	LPS Counter Regulates RNA Expression of Extracellular Proteases and Their Inhibitors in Murine Macrophages. Mediators of Inflammation, 2012, 2012, 1-9.	1.4	20
38	<i>β</i> -Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia. International Journal of Endocrinology, 2011, 2011, 1-8.	0.6	19
39	EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia–like B-cell malignancies. Blood, 2017, 129, 866-878.	0.6	14
40	A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity. European Journal of Neuroscience, 2015, 42, 2438-2454.	1.2	13
41	Single-Cell Mapping of GLP-1 and GIP Receptor Expression in the Dorsal Vagal Complex. Diabetes, 2021, 70, 1945-1955.	0.3	13
42	Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Molecular Metabolism, 2021, 51, 101231.	3.0	11
43	RhoA in tyrosine hydroxylase neurones regulates food intake and body weight via altered sensitivity to peripheral hormones. Journal of Neuroendocrinology, 2019, 31, e12761.	1.2	10
44	Plasminâ€driven fibrinolysis facilitates skin tumor growth in a genderâ€dependent manner. FASEB Journal, 2012, 26, 4445-4457.	0.2	6
45	The Molecular Diversity of Vagal Afferents Revealed. Trends in Neurosciences, 2019, 42, 663-666.	4.2	5