Timothy C Rodwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8511879/publications.pdf

Version: 2024-02-01

35 papers 1,915

430874 18 h-index 35 g-index

40 all docs

40 docs citations

times ranked

40

2278 citing authors

#	Article	IF	CITATIONS
1	Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. New England Journal of Medicine, 2018, 379, 1403-1415.	27.0	405
2	A standardised method for interpreting the association between mutations and phenotypic drug resistance in <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2017, 50, 1701354.	6.7	273
3	Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis: A Systematic Review. PLoS ONE, 2015, 10, e0119628.	2.5	236
4	The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, The, 2022, 3, e265-e273.	7.3	114
5	Predicting Extensively Drug-Resistant Mycobacterium tuberculosis Phenotypes with Genetic Mutations. Journal of Clinical Microbiology, 2014, 52, 781-789.	3.9	99
6	Novel <i>katG</i> mutations causing isoniazid resistance in clinical <i>M. tuberculosis</i> isolates. Emerging Microbes and Infections, 2015, 4, 1-9.	6.5	95
7	Detection of Low-Level Mixed-Population Drug Resistance in Mycobacterium tuberculosis Using High Fidelity Amplicon Sequencing. PLoS ONE, 2015, 10, e0126626.	2.5	93
8	Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. Journal of Clinical Microbiology, 2016, 54, 2058-2067.	3.9	76
9	Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Scientific Reports, 2018, 8, 15382.	3.3	75
10	Application of Targeted Next-Generation Sequencing Assay on a Portable Sequencing Platform for Culture-Free Detection of Drug-Resistant Tuberculosis from Clinical Samples. Journal of Clinical Microbiology, 2020, 58, .	3.9	57
11	Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Medicine, 2019, 16, e1002794.	8.4	49
12	Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. International Journal of Mycobacteriology, 2016, 5, 1-6.	0.6	42
13	Evaluation of Pyrosequencing for Detecting Extensively Drug-Resistant Mycobacterium tuberculosis among Clinical Isolates from Four High-Burden Countries. Antimicrobial Agents and Chemotherapy, 2015, 59, 414-420.	3.2	36
14	Correlating Minimum Inhibitory Concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis, 2015, 95, 137-141.	1.9	34
15	Performance of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis and rifampin resistance in a low-incidence, high-resource setting. PLoS ONE, 2017, 12, e0186139.	2.5	33
16	Requiring smartphone ownership for mHealth interventions: who could be left out?. BMC Public Health, 2020, 20, 81.	2.9	31
17	The Global Consortium for Drug-resistant Tuberculosis Diagnostics (GCDD): design of a multi-site, head-to-head study of three rapid tests to detect extensively drug-resistant tuberculosis. Trials, 2014, 15, 434.	1.6	28
18	Defining multidrug-resistant tuberculosis: correlating GenoType MTBDR plus assay results with minimum inhibitory concentrations. Diagnostic Microbiology and Infectious Disease, 2015, 82, 49-53.	1.8	21

#	Article	IF	CITATIONS
19	Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs. Journal of Clinical Microbiology, 2017, 55, 1928-1937.	3.9	16
20	Next-generation sequencing-based user-friendly platforms for drug-resistant tuberculosis diagnosis: A promise for the near future. International Journal of Mycobacteriology, 2016, 5, S27-S28.	0.6	14
21	Distinct blood transcriptomic signature of treatment in latent tuberculosis infected individuals at risk of developing active disease. Tuberculosis, 2021, 131, 102127.	1.9	13
22	Impact of Fluoroquinolone Use on Mortality Among a Cohort of Patients With Suspected Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2017, 65, 772-778.	5.8	12
23	Shedding light on the performance of a pyrosequencing assay for drug-resistant tuberculosis diagnosis. BMC Infectious Diseases, 2016, 16, 458.	2.9	9
24	Detection and quantification of Mycobacterium tuberculosis antigen CFP10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Scientific Reports, 2021, 11, 19193.	3.3	8
25	Surveillance or support: The experience of direct observation during tuberculosis treatment. Global Public Health, 2018, 13, 804-818.	2.0	7
26	Cost analysis of rapid diagnostics for drug-resistant tuberculosis. BMC Infectious Diseases, 2018, 18, 102.	2.9	6
27	A novel technique for aging male African elephants (Loxodonta africana) using craniofacial photogrammetry and geometric morphometrics. Mammalian Biology, 0, , .	1.5	5
28	Variants in Bedaquiline-Candidate-Resistance Genes: Prevalence in Bedaquiline-Naive Patients, Effect on MIC, and Association with Mycobacterium tuberculosis Lineage. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	5
29	Using Mycobacterium tuberculosis Single-Nucleotide Polymorphisms To Predict Fluoroquinolone Treatment Response. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
30	Laboratory Evaluation of a Lateral-Flow Cell for Molecular Detection of First-Line and Second-Line Antituberculosis Drug Resistance. Journal of Clinical Microbiology, 2020, 58, .	3.9	3
31	Review of automated DNA extraction systems for sequencing-based solutions for drug-resistant tuberculosis detection. Diagnostic Microbiology and Infectious Disease, 2020, 98, 115096.	1.8	3
32	Assessing COVID-19–Related Knowledge, Attitudes, and Practices Among Hispanic Primary Care Patients: Protocol for a Cross-sectional Survey Study. JMIR Research Protocols, 2021, 10, e25265.	1.0	3
33	Rapid Detection of Extensively Drug-Resistant Tuberculosis in Clinical Samples Using a Novel Tabletop Platform: Protocol for a Prospective Clinical Study. JMIR Research Protocols, 2021, 10, e26748.	1.0	2
34	Knowledge, Attitude, Practices, and Vaccine Hesitancy Among the Latinx Community in Southern California Early in the COVID-19 Pandemic: Cross-sectional Survey. JMIR Formative Research, 2022, 6, e38351.	1.4	2
35	Detecting rifampin and isoniazid resistance in Mycobacterium tuberculosis direct from patient sputum using an automated integrated system. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2022, 27, 100304.	1.3	1