Minghui Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8511849/publications.pdf

Version: 2024-02-01

218381 223531 2,699 47 26 46 h-index citations g-index papers 47 47 47 2409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2020, 13, 3330-3360.	15.6	576
2	Synergistic Manipulation of Zn ²⁺ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF ₂ Matrix for Longâ€Lifespan and Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2021, 33, e2007388.	11.1	359
3	Graphene Platforms for Smart Energy Generation and Storage. Joule, 2018, 2, 245-268.	11.7	168
4	Highâ€Voltage Zinc″on Batteries: Design Strategies and Challenges. Advanced Functional Materials, 2021, 31, 2010213.	7.8	123
5	Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Materials, 2021, 41, 230-239.	9.5	109
6	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. Advanced Materials, 2016, 28, 3305-3312.	11.1	79
7	A 4 V Class Potassium Metal Battery with Extremely Low Overpotential. ACS Nano, 2019, 13, 9306-9314.	7.3	76
8	Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Materials, 2022, 45, 465-473.	9.5	76
9	Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 5253-5260.	3.2	74
10	Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries. Journal of Power Sources, 2020, 450, 227716.	4.0	71
11	Transition metal phosphides: new generation cathode host/separator modifier for Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 7458-7480.	5.2	69
12	In Situ Carbon Insertion in Laminated Molybdenum Dioxide by Interlayer Engineering Toward Ultrastable "Rockingâ€Chair―Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2102827.	7.8	64
13	Interlayer Engineering of Molybdenum Trioxide toward Highâ€Capacity and Stable Sodium Ion Half/Full Batteries. Advanced Functional Materials, 2020, 30, 2001708.	7.8	58
14	A smart, anti-piercing and eliminating-dendrite lithium metal battery. Nano Energy, 2018, 49, 403-410.	8.2	57
15	Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2020, 477, 228696.	4.0	56
16	Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadiumâ€Based Cathodes with Excellent Lowâ€Temperature Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
17	Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life. Journal of Power Sources, 2016, 305, 106-114.	4.0	48
18	A 1D–3D interconnected Î-MnO2 nanowires network as high-performance and high energy efficiency cathode material for aqueous zinc-ion batteries. Electrochimica Acta, 2021, 370, 137740.	2.6	43

#	Article	IF	CITATIONS
19	Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chemical Engineering Journal, 2022, 432, 134227.	6.6	42
20	Uniquely Arranged Grapheneâ€onâ€Graphene Structure as a Binderâ€Free Anode for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2014, 10, 5035-5041.	5.2	36
21	Metal/graphene oxide batteries. Carbon, 2017, 125, 299-307.	5.4	36
22	In-situ construction of a NaF-rich cathode–electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery. Materials Today Energy, 2022, 23, 100898.	2.5	36
23	Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 18240-18247.	5.2	31
24	Dualâ€Redox Sites Guarantee High apacity Sodium Storage in Twoâ€Dimension Conjugated Metal–Organic Frameworks. Advanced Functional Materials, 2022, 32, .	7.8	31
25	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon, 2016, 106, 9-19.	5.4	29
26	Interlayer Chemistry of Layered Electrode Materials in Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2007358.	7.8	28
27	Activating the Stepwise Intercalation–Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1126-1137.	4.0	26
28	Postâ€Lithiumâ€Ion Battery Era: Recent Advances in Rechargeable Potassiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, 512-536.	1.7	25
29	A respiration-detective graphene oxide/lithium battery. Journal of Materials Chemistry A, 2016, 4, 19154-19159.	5.2	24
30	Integration of Localized Electric-Field Redistribution and Interfacial Tin Nanocoating of Lithium Microparticles toward Long-Life Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 650-659.	4.0	24
31	Cation mixing in Wadsley-Roth phase anode of lithium-ion battery improves cycling stability and fast Li+ storage. Applied Physics Reviews, 2021, 8, .	5.5	21
32	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
33	Chromatographic selectivity of graphene capillary column pretreated with bio-inspired polydopamine polymer. RSC Advances, 2015, 5, 74040-74045.	1.7	17
34	Ten Thousand-Cycle Ultrafast Energy Storage of Wadsleyâ€"Roth Phase Feâ€"Nb Oxides with a Desolvation Promoting Interfacial Layer. Nano Letters, 2021, 21, 9675-9683.	4.5	17
35	An Imperata Cylindrical Flowers-Shaped Porous Graphene Microelectrode for Direct Electrochemistry of Glucose Oxidase. Journal of the Electrochemical Society, 2015, 162, B138-B144.	1.3	12
36	Ultrahigh Rate and Ultralong Life Span Sodium Storage of FePS ₃ Enabled by the Space Confinement Effect of Layered Expanded Graphite. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55254-55262.	4.0	11

#	Article	IF	CITATIONS
37	Manipulating the Electronic Structure of Graphite Intercalation Compounds for Boosting the Bifunctional Oxygen Catalytic Performance. Small, 2022, 18, e2107667.	5.2	11
38	Achieving Stable Zinc-lon Storage Performance of Manganese Oxides by Synergistic Engineering of the Interlayer Structure and Interface. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10489-10497.	4.0	11
39	Fast and homogeneous ion regulation toward a 4ÂV, high-rate and dendrite-free potassium metal battery. Chemical Engineering Journal, 2022, 442, 135927.	6.6	11
40	Nb-based compounds for rapid lithium-ion storage and diffusion. Journal of Power Sources, 2021, 496, 229840.	4.0	9
41	Enhancing the coupling effect in a sandwiched FeNiPS ₃ /graphite catalyst derived from graphite intercalation compounds for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11793-11802.	5. 2	8
42	Interfacial Protection Engineering of Sodium Nanoparticles toward Dendriteâ€Free and Longâ€Life Sodium Metal Battery. Small, 2021, 17, e2102400.	5. 2	7
43	An in situ constructed Li+-Conductive interphase enables high-capacity and high-rate SiOx/C anode. Journal of Power Sources, 2022, 542, 231795.	4.0	5
44	Inâ€Situ Activated NiFePBAâ€FeOOH Electrocatalyst for Oxygen Evolution Reaction and Zincâ€Air Battery. ChemistrySelect, 2021, 6, 3683-3691.	0.7	4
45	Oxidation degree of graphene reflected by morphology-tailored ZnO growth. Carbon, 2016, 107, 583-592.	5.4	3
46	The Efficient K Ion Storage of M ₂ P ₂ O ₇ /C (M=Fe, Co, Ni) Anode Derived from Organicâ€norganic Phosphate Precursors. Chemistry - A European Journal, 2021, 27, 9031-9037.	1.7	2
47	Frontispiece: Postâ€Lithiumâ€lon Battery Era: Recent Advances in Rechargeable Potassiumâ€lon Batteries. Chemistry - A European Journal, 2021, 27, .	1.7	o