Albert Hertzog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/851147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent developments in gravityâ€wave effects in climate models and the global distribution of gravityâ€wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1103-1124.	2.7	403
2	A Comparison between Gravity Wave Momentum Fluxes in Observations and Climate Models. Journal of Climate, 2013, 26, 6383-6405.	3.2	245
3	Estimation of Gravity Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric Balloon Flights. Part II: Results from the Vorcore Campaign in Antarctica. Journals of the Atmospheric Sciences, 2008, 65, 3056-3070.	1.7	190
4	On the Intermittency of Gravity Wave Momentum Flux in the Stratosphere. Journals of the Atmospheric Sciences, 2012, 69, 3433-3448.	1.7	113
5	Gravity waves over Antarctica and the Southern Ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 101-118.	2.7	83
6	The Concordiasi Project in Antarctica. Bulletin of the American Meteorological Society, 2010, 91, 69-86.	3.3	78
7	Comparison of Gravity Waves in the Southern Hemisphere Derived from Balloon Observations and the ECMWF Analyses. Journals of the Atmospheric Sciences, 2015, 72, 3449-3468.	1.7	75
8	Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere. Geophysical Research Letters, 2016, 43, 3543-3553.	4.0	70
9	A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 2. Gravity waves. Journal of Geophysical Research, 2001, 106, 22745-22761.	3.3	64
10	Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,166.	3.3	54
11	Gravity waves generated by deep tropical convection: Estimates from balloon observations and mesoscale simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9690-9707.	3.3	52
12	Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer. Atmospheric Chemistry and Physics, 2016, 16, 35-46.	4.9	51
13	Stratéole/Vorcore—Long-duration, Superpressure Balloons to Study the Antarctic Lower Stratosphere during the 2005 Winter. Journal of Atmospheric and Oceanic Technology, 2007, 24, 2048-2061.	1.3	50
14	Quasiâ€Lagrangian superpressure balloon measurements of gravityâ€wave momentum fluxes in the polar stratosphere of both hemispheres. Geophysical Research Letters, 2007, 34, .	4.0	49
15	Estimation of Gravity Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric Balloon Flights. Part I: Theory and Simulations. Journals of the Atmospheric Sciences, 2008, 65, 3042-3055.	1.7	45
16	Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophysical Research Letters, 2002, 29, 70-1-70-4.	4.0	44
17	Highâ€ f requency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus. Geophysical Research Letters, 2016, 43, 6629-6635.	4.0	39
18	The response of superpressure balloons to gravity wave motions. Atmospheric Measurement Techniques, 2014, 7, 1043-1055.	3.1	35

Albert Hertzog

#	Article	IF	CITATIONS
19	On the Gravity Wave Forcing during the Southern Stratospheric Final Warming in LMDZ. Journals of the Atmospheric Sciences, 2016, 73, 3213-3226.	1.7	31
20	The accuracy of stratospheric analyses in the northern hemisphere inferred from long-duration balloon flights. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 607-626.	2.7	30
21	Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. Journal of Geophysical Research, 2008, 113, .	3.3	30
22	On the Relation between Gravity Waves and Wind Speed in the Lower Stratosphere over the Southern Ocean. Journals of the Atmospheric Sciences, 2017, 74, 1075-1093.	1.7	28
23	AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH ₄ and CO ₂ . Atmospheric Measurement Techniques, 2017, 10, 2163-2181.	3.1	27
24	A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 1. Planetary scales. Journal of Geophysical Research, 2001, 106, 22725-22743.	3.3	26
25	Around the World in 84 Days. Eos, 2018, 99, .	0.1	25
26	Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements: Occurrence, Nature, and Impact on Vertical Mixing. Journals of the Atmospheric Sciences, 2017, 74, 3847-3869.	1.7	23
27	Impact of gravity waves on the motion and distribution of atmospheric ice particles. Atmospheric Chemistry and Physics, 2018, 18, 10799-10823.	4.9	23
28	The Concordiasi Field Experiment over Antarctica: First Results from Innovative Atmospheric Measurements. Bulletin of the American Meteorological Society, 2013, 94, ES17-ES20.	3.3	22
29	Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations. Atmospheric Chemistry and Physics, 2017, 17, 8045-8061.	4.9	21
30	An Assessment of ECMWF and NCEP–NCAR Reanalyses in the Southern Hemisphere at the End of the Presatellite Era: Results from the EOLE Experiment (1971–72). Monthly Weather Review, 2006, 134, 3367-3383.	1.4	20
31	Observation of Gravity Waves at the Tropical Tropopause Using Superpressure Balloons. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035165.	3.3	20
32	Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights. Atmospheric Chemistry and Physics, 2006, 6, 5391-5397.	4.9	17
33	Quasiâ€Lagrangian measurements of nitric acid trihydrate formation over Antarctica. Journal of Geophysical Research D: Atmospheres, 2014, 119, 245-258.	3.3	16
34	A modelling case study of a large-scale cirrus in the tropical tropopause layer. Atmospheric Chemistry and Physics, 2016, 16, 3881-3902.	4.9	9
35	Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses. Atmospheric Chemistry and Physics, 2020, 20, 9331-9350.	4.9	8
36	Observational Validation of Parameterized Gravity Waves From Tropical Convection in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033954.	3.3	7

#	Article	IF	CITATIONS
37	First Superâ€Pressure Balloonâ€Borne Fineâ€Verticalâ€Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO. Geophysical Research Letters, 2022, 49, .	4.0	7
38	A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons. Atmospheric Measurement Techniques, 2021, 14, 2635-2648.	3.1	6
39	First quasi-Lagrangian in situ measurements of Antarctic Polar springtime ozone: observed ozone loss rates from the Concordiasi long-duration balloon campaign. Atmospheric Chemistry and Physics, 2015, 15, 2463-2472.	4.9	4
40	Accuracy of Balloon Trajectory Forecasts in the Lower Stratosphere. Atmosphere, 2019, 10, 102.	2.3	4
41	How Can We Improve the Driving of the Quasiâ€Biennial Oscillation in Climate Models?. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033411.	3.3	2
42	Improvement of stratospheric balloon GPS positioning and the impact on gravity wave parameter estimation for the Concordiasi campaign in Antarctica. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9977-9997.	3.3	1