
Andrea Pavesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8510825/publications.pdf Version: 2024-02-01

ANDREA DAVESI

#	Article	IF	CITATIONS
1	A Human Neurovascular Unit On-a-Chip. Methods in Molecular Biology, 2022, 2373, 107-119.	0.9	1
2	Immunosuppressive Drugâ€Resistant Armored Tâ€Cell Receptor T Cells for Immune Therapy of HCC in Liver Transplant Patients. Hepatology, 2021, 74, 200-213.	7.3	29
3	Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Therapeutics, 2021, 31, 145-154.	3.6	3
4	Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions. JHEP Reports, 2021, 3, 100318.	4.9	5
5	<i>In vitro</i> 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioengineering, 2021, 5, 041502.	6.2	2
6	A 3D pancreatic tumor model to study T cell infiltration. Biomaterials Science, 2021, 9, 7420-7431.	5.4	17
7	METTL6 is a tRNA m ³ C methyltransferase that regulates pluripotency and tumor cell growth. Science Advances, 2020, 6, eaaz4551.	10.3	51
8	T cell receptor-engineered mucosal-associated invariant T cells with antiviral cytotoxic potential against hepatitis virus replicating hepatoma cells. Journal of Hepatology, 2020, 73, S83-S84.	3.7	0
9	CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Molecular Therapy - Methods and Clinical Development, 2020, 19, 149-161.	4.1	14
10	Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Frontiers in Pharmacology, 2019, 10, 349.	3.5	20
11	Abstract A049: Three-dimensional microfluidic platform mimicking the tumor microenvironment. Cancer Immunology Research, 2019, 7, A049-A049.	3.4	1
12	Abstract 47: Analyzing immune cell infiltration of cancer spheroids in a 3D cell culture platform. , 2019, , .		0
13	Nonlytic Lymphocytes Engineered to Express Virus-SpecificÂT-Cell Receptors Limit HBV Infection byÂActivatingÂAPOBEC3. Gastroenterology, 2018, 155, 180-193.e6.	1.3	66
14	A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells. Oncotarget, 2018, 9, 36110-36125.	1.8	26
15	Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Molecular Therapy, 2018, 26, 2553-2566.	8.2	20
16	Studying TCR T cell anti-tumor activity in a microfluidic intrahepatic tumor model. Methods in Cell Biology, 2018, 146, 199-214.	1.1	9
17	Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Frontiers in Immunology, 2018, 9, 416.	4.8	91
18	MBNL1 alternative splicing isoforms play opposing roles in cancer. Life Science Alliance, 2018, 1, e201800157.	2.8	41

Andrea Pavesi

#	Article	IF	CITATIONS
19	A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab on A Chip, 2017, 17, 448-459.	6.0	338
20	Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale, 2017, 9, 12908-12915.	5.6	24
21	A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight, 2017, 2, .	5.0	169
22	Creating Multiple Organotypic Models on a Single 3D Cell Culture Platform. BioTechniques, 2017, 62, 132-133.	1.8	2
23	Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. ELife, 2017, 6, .	6.0	41
24	On hip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnology and Bioengineering, 2016, 113, 859-869.	3.3	50
25	Engineering a 3D microfluidic culture platform for tumor-treating field application. Scientific Reports, 2016, 6, 26584.	3.3	73
26	Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discovery Today, 2016, 21, 1472-1478.	6.4	63
27	Advances in microfluidics in combating infectious diseases. Biotechnology Advances, 2016, 34, 404-421.	11.7	79
28	Controlled electromechanical cell stimulation on-a-chip. Scientific Reports, 2015, 5, 11800.	3.3	97
29	Microbioreactor for cell cultures under uniaxial cyclic strain. , 2015, , .		0
30	Electrical conditioning of adiposeâ€derived stem cells in a multiâ€chamber culture platform. Biotechnology and Bioengineering, 2014, 111, 1452-1463.	3.3	30
31	Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab on A Chip, 2014, 14, 459-462.	6.0	71
32	Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart. Stem Cells and Development, 2014, 23, 888-898.	2.1	52
33	Microfabrication and microfluidics for muscle tissue models. Progress in Biophysics and Molecular Biology, 2014, 115, 279-293.	2.9	43
34	Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygenâ€evolving complex show altered <scp>PSII</scp> superâ€complex organization and shortâ€term adaptive mechanisms. Plant Journal, 2013, 75, 671-684.	5.7	99
35	Reply to the Letter by Saikrishnan et al about the Article by Vismara et al Published in Int J Artif Organs 2011; 34 (4): 383–391. International Journal of Artificial Organs, 2012, 35, 160-161.	1.4	0
36	How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab on A Chip, 2011, 11, 1593.	6.0	49

ANDREA PAVESI

#	Article	IF	CITATIONS
37	A Pulsatile Simulator for the <i>in Vitro Analysis of the Mitral Valve with Tri-Axial Papillary Muscle Displacement</i> . International Journal of Artificial Organs, 2011, 34, 383-391.	1.4	23
38	Development of a Pulsatile Simulator for In-Vitro Analysis of the Mitral Valve Under Controlled Morphometric Conditions. , 2009, , .		0
39	A Novel Bioreactor for In Vitro Electro-Mechanical Stimulation of Cardiac Constructs. , 2009, , .		0