Luigi De Simio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8510478/publications.pdf

Version: 2024-02-01

25 papers 378 citations

7 h-index

1307594

1199594 12 g-index

26 all docs

26 docs citations

times ranked

26

458 citing authors

#	Article	IF	CITATIONS
1	Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends. Applied Energy, 2013, 111, 1162-1171.	10.1	142
2	Numerical simulation and experimental test of dual fuel operated diesel engines. Applied Thermal Engineering, 2014, 65, 403-417.	6.0	57
3	A numerical and experimental study of dual fuel diesel engine for different injection timings. Applied Thermal Engineering, 2016, 101, 630-638.	6.0	41
4	Experimental and numerical study of hydrogen addition in a natural gas heavy duty engine for a bus vehicle. International Journal of Hydrogen Energy, 2013, 38, 6865-6873.	7.1	26
5	Combined Numerical-experimental Study of Dual Fuel Diesel Engine. Energy Procedia, 2014, 45, 721-730.	1.8	25
6	Possible transport energy sources for the future. Transport Policy, 2013, 27, 1-10.	6.6	16
7	Experimental Analysis of a Natural Gas Fueled Engine and 1-D Simulation of VVT and VVA Strategies. , 0, , .		15
8	Gaseous and particle emissions in low-temperature combustion diesel–HCNG dual-fuel operation with double pilot injection. Applied Energy, 2019, 253, 113602.	10.1	14
9	Effect of Ethanol Content on Thermal Efficiency of a Spark-Ignition Light-Duty Engine. , 2012, 2012, 1-8.		9
10	A STUDY OF DIFFERENT EGR ROUTES ON A HEAVY DUTY STOICHIOMETRIC NATURAL GAS ENGINE. , 0, , .		6
11	Use of Ionization Current to Estimate CO Rate in a Small 2-Stroke SI Engine. , 0, , .		4
12	Effect of Natural Gas/Hydrogen Blends on Spark Ignition Stoichiometric Engine Efficiency. , 2011, , .		3
13	Low-polluting, high-efficiency, mixed fuel/natural gas engine for transport application. WIT Transactions on the Built Environment, 2007, , .	0.0	3
14	Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis., 0,,.		2
15	Dataset for comparison between single and double pilot injection in diesel-natural gas dual fuel engine. Data in Brief, 2020, 28, 104963.	1.0	2
16	A method for determining hydrogen–methane–nitrogen mixtures for laboratory tests of syngas-fuelled internal combustion engines. International Journal of Engine Research, 2021, 22, 2533-2547.	2.3	2
17	Modeling of a Spark Ignition Engine with Turbo-Generator for Energy Recovery. , 0, , .		2
18	Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas. Journal of Combustion, 2012, 2012, 1-8.	1.0	1

#	Article	IF	CITATIONS
19	Effects of Low Temperature Combustion on Particle and Gaseous Emission of a Dual Fuel Light Duty Engine. , $2017, \dots$		1
20	Gaseous biofuels from waste: low environmental and toxicological impact with maximum benefit on the greenhouse effect., $2008, \ldots$		1
21	Research into the use of a lean burn and a stoichiometric heavy duty engine fuelled with a blend of hydrogen and natural gas. , 2012, , .		1
22	A Power Split Hybrid Propulsion System for Vehicles with Gearbox. , 0, , .		1
23	Approach for Smart Use of Wastes and Biofuels. The Global Environmental Engineers, 0, 8, 70-81.	0.3	1
24	Investigation of Combustion Process in a Small Optically Accessible Two Stroke SI Engine. , 2013, , .		0
25	Effects of EGR on Engines Fueled with Natural Gas and Natural Gas/Hydrogen Blends. Energy, Environment, and Sustainability, 2019, , 143-168.	1.0	0