James Morton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8510412/publications.pdf Version: 2024-02-01

INMES MODION

#	Article	IF	CITATIONS
1	High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. Journal of Sports Sciences, 2011, 29, 547-553.	1.0	402
2	Seasonal Training-Load Quantification in Elite English Premier League Soccer Players. International Journal of Sports Physiology and Performance, 2015, 10, 489-497.	1.1	250
3	The Exercise-Induced Stress Response of Skeletal Muscle, with Specific Emphasis on Humans. Sports Medicine, 2009, 39, 643-662.	3.1	199
4	Carbohydrate availability and exercise training adaptation: Too much of a good thing?. European Journal of Sport Science, 2015, 15, 3-12.	1.4	169
5	Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. Journal of Applied Physiology, 2009, 106, 1513-1521.	1.2	157
6	Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. Journal of Applied Physiology, 2012, 112, 1135-1143.	1.2	155
7	Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Medicine, 2018, 48, 1031-1048.	3.1	146
8	Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients, 2018, 10, 298.	1.7	144
9	New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine, 2016, 98, 144-158.	1.3	132
10	Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. Journal of Applied Physiology, 2006, 101, 176-182.	1.2	131
11	Quantification of training load during one-, two- and three-game week schedules in professional soccer players from the English Premier League: implications for carbohydrate periodisation. Journal of Sports Sciences, 2016, 34, 1250-1259.	1.0	131
12	Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R450-R458.	0.9	123
13	UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. British Journal of Sports Medicine, 2021, 55, 416-416.	3.1	111
14	Quantification of Seasonal-Long Physical Load in Soccer Players With Different Starting Status From the English Premier League: Implications for Maintaining Squad Physical Fitness. International Journal of Sports Physiology and Performance, 2016, 11, 1038-1046.	1.1	105
15	Proteomic investigation of changes in human vastus lateralis muscle in response to intervalâ€exercise training. Proteomics, 2009, 9, 5155-5174.	1.3	94
16	Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radical Biology and Medicine, 2015, 84, 65-76.	1.3	94
17	Toward a Common Understanding of Diet–Exercise Strategies to Manipulate Fuel Availability for Training and Competition Preparation in Endurance Sport. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 451-463.	1.0	85
18	Energy Intake and Expenditure of Professional Soccer Players of the English Premier League: Evidence of Carbohydrate Periodization. International Journal of Sport Nutrition and Exercise Metabolism, 2017, 27, 228-238.	1.0	83

#	Article	IF	CITATIONS
19	Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 364-374.	1.0	81
20	Making Weight in Combat Sports. Strength and Conditioning Journal, 2011, 33, 25-39.	0.7	80
21	Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiological Reports, 2016, 4, e12803.	0.7	79
22	Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. European Journal of Applied Physiology, 2019, 119, 1491-1501.	1.2	76
23	Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients, 2021, 13, 1075.	1.7	76
24	Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radical Biology and Medicine, 2014, 70, 23-32.	1.3	74
25	The Emerging Role of p53 in Exercise Metabolism. Sports Medicine, 2014, 44, 303-309.	3.1	74
26	Making the Weight: A Case Study From Professional Boxing. International Journal of Sport Nutrition and Exercise Metabolism, 2010, 20, 80-85.	1.0	69
27	Quantification of Training Load, Energy Intake, and Physiological Adaptations During a Rugby Preseason. Journal of Strength and Conditioning Research, 2015, 29, 534-544.	1.0	68
28	Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiologica, 2007, 190, 319-327.	1.8	63
29	A Framework for Periodized Nutrition for Athletics. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 141-151.	1.0	63
30	Body composition assessment of English Premier League soccer players: a comparative DXA analysis of first team, U21 and U18 squads. Journal of Sports Sciences, 2015, 33, 1799-1806.	1.0	60
31	Energy intake and expenditure assessed â€~inâ€season' in an elite European rugby union squad. European Journal of Sport Science, 2015, 15, 469-479.	1.4	57
32	High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise. Applied Physiology, Nutrition and Metabolism, 2009, 34, 1098-1107.	0.9	52
33	Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 608-613.	0.9	52
34	Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!. Biogerontology, 2015, 16, 249-264.	2.0	52
35	Trained Men Display Increased Basal Heat Shock Protein Content of Skeletal Muscle. Medicine and Science in Sports and Exercise, 2008, 40, 1255-1262.	0.2	51
36	Weight-Making Strategies in Professional Jockeys: Implications for Physical and Mental Health and Well-Being. Sports Medicine, 2014, 44, 785-796.	3.1	51

#	Article	IF	CITATIONS
37	An Intensive Winter Fixture Schedule Induces a Transient Fall in Salivary IgA in English Premier League Soccer Players. Research in Sports Medicine, 2014, 22, 346-354.	0.7	48
38	PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology, 2012, 13, 621-631.	2.0	47
39	Vitamin C Consumption Does Not Impair Training-Induced Improvements in Exercise Performance. International Journal of Sports Physiology and Performance, 2011, 6, 58-69.	1.1	46
40	Rapid weight-loss impairs simulated riding performance and strength in jockeys: implications for making-weight. Journal of Sports Sciences, 2014, 32, 383-391.	1.0	45
41	Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Applied Physiology, Nutrition and Metabolism, 2017, 42, 941-947.	0.9	45
42	Postâ€exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation. Journal of Physiology, 2019, 597, 4779-4796.	1.3	43
43	Case Study: Extreme Weight Making Causes Relative Energy Deficiency, Dehydration, and Acute Kidney Injury in a Male Mixed Martial Arts Athlete. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 331-338.	1.0	42
44	Carbohydrate mouth rinse and caffeine improves highâ€intensity interval running capacity when carbohydrate restricted. European Journal of Sport Science, 2016, 16, 560-568.	1.4	41
45	Passive and post-exercise cold-water immersion augments PGC-1α and VEGF expression in human skeletal muscle. European Journal of Applied Physiology, 2016, 116, 2315-2326.	1.2	40
46	Protein ingestion does not impair exercise-induced AMPK signalling when in a glycogen-depleted state: implications for train-low compete-high. European Journal of Applied Physiology, 2013, 113, 1457-1468.	1.2	37
47	Carbohydrate Restriction in Type 1 Diabetes: A Realistic Therapy for Improved Glycaemic Control and Athletic Performance?. Nutrients, 2019, 11, 1022.	1.7	37
48	Case Study: Muscle Atrophy and Hypertrophy in a Premier League Soccer Player During Rehabilitation From ACL Injury. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 543-552.	1.0	36
49	The effect of concurrent training organisation in youth elite soccer players. European Journal of Applied Physiology, 2015, 115, 2367-2381.	1.2	36
50	The exercise-induced stress response in skeletal muscle: failure during aging. Applied Physiology, Nutrition and Metabolism, 2008, 33, 1033-1041.	0.9	35
51	Exercise training–induced genderâ€specific heat shock protein adaptations in human skeletal muscle. Muscle and Nerve, 2009, 39, 230-233.	1.0	34
52	Application of the [γ- ³² P] ATP kinase assay to study anabolic signaling in human skeletal muscle. Journal of Applied Physiology, 2014, 116, 504-513.	1.2	34
53	Reviewing scientific manuscripts: how much statistical knowledge should a reviewer really know?. American Journal of Physiology - Advances in Physiology Education, 2009, 33, 7-9.	0.8	31
54	Muscle glycogen utilisation during Rugby match play: Effects of pre-game carbohydrate. Journal of Science and Medicine in Sport, 2016, 19, 1033-1038.	0.6	31

#	Article	IF	CITATIONS
55	From Paper to Podium: Quantifying the Translational Potential of Performance Nutrition Research. Sports Medicine, 2019, 49, 25-37.	3.1	31
56	Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signaling: implications for CHO periodization. Journal of Applied Physiology, 2019, 126, 1587-1597.	1.2	31
57	Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle. Longevity & Healthspan, 2013, 2, 11.	6.7	30
58	Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity. Proteomes, 2013, 1, 290-308.	1.7	30
59	Prevalence, Severity and Potential Nutritional Causes of Gastrointestinal Symptoms during a Marathon in Recreational Runners. Nutrients, 2018, 10, 811.	1.7	30
60	Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states. Amino Acids, 2015, 47, 407-416.	1.2	28
61	Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. Journal of Applied Physiology, 2017, 123, 451-459.	1.2	28
62	The Psychological and Physiological Consequences of Low Energy Availability in a Male Combat Sport Athlete. Medicine and Science in Sports and Exercise, 2021, 53, 673-683.	0.2	28
63	Common student misconceptions in exercise physiology and biochemistry. American Journal of Physiology - Advances in Physiology Education, 2008, 32, 142-146.	0.8	27
64	Daily Distribution of Carbohydrate, Protein and Fat Intake in Elite Youth Academy Soccer Players Over a 7-Day Training Period. International Journal of Sport Nutrition and Exercise Metabolism, 2016, 26, 473-480.	1.0	27
65	An injury audit in high-level male youth soccer players from English, Spanish, Uruguayan and Brazilian academies. Physical Therapy in Sport, 2020, 44, 53-60.	0.8	27
66	Postexercise High-Fat Feeding Suppresses p70S6K1 Activity in Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2016, 48, 2108-2117.	0.2	26
67	Markers of Bone Health, Renal Function, Liver Function, Anthropometry and Perception of Mood: A Comparison between Flat and National Hunt Jockeys. International Journal of Sports Medicine, 2013, 34, 453-459.	0.8	25
68	Self-selecting Fluid Intake while Maintaining High Carbohydrate Availability Does not Impair Half-marathon Performance. International Journal of Sports Medicine, 2014, 35, 1216-1222.	0.8	24
69	Daily Distribution of Macronutrient Intakes of Professional Soccer Players From the English Premier League. International Journal of Sport Nutrition and Exercise Metabolism, 2017, 27, 491-498.	1.0	24
70	Reliability of "in-season―fitness assessments in youth elite soccer players: a working model for practitioners and coaches. Science and Medicine in Football, 2018, 2, 177-183.	1.0	24
71	Assessment of energy expenditure in elite jockeys during simulated race riding and a working day: implications for making weight. Applied Physiology, Nutrition and Metabolism, 2013, 38, 415-420.	0.9	23
72	Position specific differences in the anthropometric characteristics of elite European Super League rugby players. European Journal of Sport Science, 2015, 15, 523-529.	1.4	23

#	Article	IF	CITATIONS
73	Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: implications for athlete welfare. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1318-1320.	0.9	23
74	An Alternative Dietary Strategy to Make Weight While Improving Mood, Decreasing Body Fat, and Not Dehydrating: A Case Study of a Professional Jockey. International Journal of Sport Nutrition and Exercise Metabolism, 2012, 22, 225-231.	1.0	22
75	Altering fatty acid availability does not impair prolonged, continuous running to fatigue: evidence for carbohydrate dependence. Journal of Applied Physiology, 2016, 120, 107-113.	1.2	22
76	Quantification of training load distribution in mixed martial arts athletes: A lack of periodisation and load management. PLoS ONE, 2021, 16, e0251266.	1.1	22
77	Current controversies in sports nutrition. European Journal of Sport Science, 2015, 15, 1-2.	1.4	21
78	Season-long increases in perceived muscle soreness in professional rugby league players: role of player position, match characteristics and playing surface. Journal of Sports Sciences, 2016, 34, 1067-1072.	1.0	21
79	Cross-sectional comparison of body composition and resting metabolic rate in Premier League academy soccer players: Implications for growth and maturation. Journal of Sports Sciences, 2020, 38, 1326-1334.	1.0	21
80	Energy Requirements of Male Academy Soccer Players from the English Premier League. Medicine and Science in Sports and Exercise, 2021, 53, 200-210.	0.2	21
81	Fasted Exercise and Increased Dietary Protein Reduces Body Fat and Improves Strength in Jockeys. International Journal of Sports Medicine, 2015, 36, 1008-1014.	0.8	20
82	Seasonal training and match load and micro-cycle periodization in male Premier League academy soccer players. Journal of Sports Sciences, 2021, 39, 1-12.	1.0	20
83	Fuelling the female athlete: Carbohydrate and protein recommendations. European Journal of Sport Science, 2022, 22, 684-696.	1.4	20
84	The physical demands of mixed martial arts: A narrative review using the ARMSS model to provide a hierarchy of evidence. Journal of Sports Sciences, 2020, 38, 2819-2841.	1.0	19
85	Post-exercise recovery for the endurance athlete with type 1 diabetes: a consensus statement. Lancet Diabetes and Endocrinology,the, 2021, 9, 304-317.	5.5	18
86	Montmorency tart cherry juice does not reduce markers of muscle soreness, function and inflammation following professional male rugby League matchâ€play. European Journal of Sport Science, 2021, 21, 1003-1012.	1.4	16
87	Glycogen Utilization during Running: Intensity, Sex, and Muscle-Specific Responses. Medicine and Science in Sports and Exercise, 2020, 52, 1966-1975.	0.2	16
88	Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. Journal of Physiology, 2021, 599, 2823-2849.	1.3	16
89	Isometric maximal voluntary force evaluated using an isometric mid-thigh pull differentiates English Premier League youth soccer players from a maturity-matched control group. Science and Medicine in Football, 2018, 2, 209-215.	1.0	15
90	Energy and Macronutrient Considerations for Young Athletes. Strength and Conditioning Journal, 2020, 42, 109-119.	0.7	15

#	Article	IF	CITATIONS
91	The horseracing industry's perception of nutritional and weight-making practices of professional jockeys. Qualitative Research in Sport, Exercise and Health, 2017, 9, 568-582.	3.3	14
92	Assessment of Energy Expenditure of a Professional Goalkeeper From the English Premier League Using the Doubly Labeled Water Method. International Journal of Sports Physiology and Performance, 2019, 14, 681-684.	1.1	14
93	Daily Changes of Resting Metabolic Rate in Elite Rugby Union Players. Medicine and Science in Sports and Exercise, 2020, 52, 637-644.	0.2	14
94	Carbohydrate fear, skinfold targets and body image issues: a qualitative analysis of player and stakeholder perceptions of the nutrition culture within elite female soccer. Science and Medicine in Football, 2022, 6, 675-685.	1.0	14
95	The physical demands of Super League rugby: Experiences of a newly promoted franchise. European Journal of Sport Science, 2015, 15, 505-513.	1.4	13
96	Male Flat Jockeys Do Not Display Deteriorations in Bone Density or Resting Metabolic Rate in Accordance With Race Riding Experience: Implications for RED-S. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 434-439.	1.0	13
97	Ultrasound Does Not Detect Acute Changes in Glycogen in Vastus Lateralis of Man. Medicine and Science in Sports and Exercise, 2019, 51, 2286-2293.	0.2	13
98	Achieving energy balance with a highâ€fat meal does not enhance skeletal muscle adaptation and impairs glycaemic response in a sleepâ€low training model. Experimental Physiology, 2020, 105, 1778-1791.	0.9	13
99	Training duration may not be a predisposing factor in potential maladaptations in talent development programmes that promote early specialisation in elite youth soccer. International Journal of Sports Science and Coaching, 2018, 13, 674-678.	0.7	12
100	Performance Nutrition in the digital era – An exploratory study into the use of social media by sports nutritionists. Journal of Sports Sciences, 2019, 37, 2467-2474.	1.0	12
101	An audit of hormonal contraceptive use in Women's Super League soccer players; implications on symptomology. Science and Medicine in Football, 2022, 6, 153-158.	1.0	12
102	The genetic association with injury risk in male academy soccer players depends on maturity status. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 338-350.	1.3	12
103	Implementing concurrent-training and nutritional strategies in professional football: a complex challenge for coaches and practitioners. Science and Medicine in Football, 2017, 1, 65-73.	1.0	11
104	DXAâ€derived estimates of energy balance and its relationship with changes in body composition across a season in team sport athletes. European Journal of Sport Science, 2020, 20, 859-867.	1.4	11
105	Acute simulated soccer-specific training increases PGC-1α mRNA expression in human skeletal muscle. Journal of Sports Sciences, 2015, 33, 1493-1503.	1.0	10
106	Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle. Proteomes, 2016, 4, 15.	1.7	10
107	Energy Expenditure of Female International Standard Soccer Players: A Doubly Labeled Water Investigation. Medicine and Science in Sports and Exercise, 2022, 54, 769-779.	0.2	10
108	An Assessment of the Validity of the Remote Food Photography Method (Termed Snap-N-Send) in Experienced and Inexperienced Sport Nutritionists. International Journal of Sport Nutrition and Exercise Metabolism, 2021, 31, 125-134.	1.0	9

#	Article	IF	CITATIONS
109	Physical loading in professional soccer players: Implications for contemporary guidelines to encompass carbohydrate periodization. Journal of Sports Sciences, 2022, 40, 1000-1019.	1.0	9
110	¹³ C-glucose-fructose labeling reveals comparable exogenous CHO oxidation during exercise when consuming 120 g/h in fluid, gel, jelly chew, or coingestion. Journal of Applied Physiology, 2022, 132, 1394-1406.	1.2	9
111	Case Study: Muscle Atrophy, Hypertrophy, and Energy Expenditure of a Premier League Soccer Player During Rehabilitation From Anterior Cruciate Ligament Injury. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 559-566.	1.0	8
112	Graded reductions in preâ€exercise glycogen concentration do not augment exerciseâ€induced nuclear AMPK and PGCâ€1α protein content in human muscle. Experimental Physiology, 2020, 105, 1882-1894.	0.9	8
113	Critical reflections from a neophyte lecturer in higher education: a selfâ€narrative from an exercise â€ ⁻ physiologist'!. Reflective Practice, 2009, 10, 233-243.	0.7	7
114	Four Weeks of Probiotic Supplementation Alters the Metabolic Perturbations Induced by Marathon Running: Insight from Metabolomics. Metabolites, 2021, 11, 535.	1.3	7
115	"Fuel for the Damage Inducedâ€: Untargeted Metabolomics in Elite Rugby Union Match Play. Metabolites, 2021, 11, 544.	1.3	7
116	PRESCRIBING, QUANTIFYING, AND MONITORING EXERCISE INTENSITY DURING INTERVAL TRAINING. Medicine and Science in Sports and Exercise, 2007, 39, 1885.	0.2	6
117	Extreme Variation of Nutritional Composition and Osmolality of Commercially Available Carbohydrate Energy Gels. International Journal of Sport Nutrition and Exercise Metabolism, 2015, 25, 504-509.	1.0	6
118	Energy expenditure in professional flat jockeys using doubly labelled water during the racing season: Implications for body weight management. European Journal of Sport Science, 2018, 18, 235-242.	1.4	6
119	Whey Protein Augments Leucinemia and Postexercise p70S6K1 Activity Compared With a Hydrolyzed Collagen Blend When in Recovery From Training With Low Carbohydrate Availability. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 651-659.	1.0	6
120	PGC-1α alternative promoter (Exon 1b) controls augmentation of total PGC-1α gene expression in response to cold water immersion and low glycogen availability. European Journal of Applied Physiology, 2020, 120, 2487-2493.	1.2	6
121	An audit of performance nutrition services in English soccer academies: implications for optimising player development. Science and Medicine in Football, 2023, 7, 146-156.	1.0	6
122	Free-sugar, total-sugar, fibre, and micronutrient intake within elite youth British soccer players: a nutritional transition from schoolboy to fulltime soccer player. Applied Physiology, Nutrition and Metabolism, 2017, 42, 517-522.	0.9	5
123	Low preâ€exercise muscle glycogen availability offsets the effect of postâ€exercise cold water immersion in augmenting PGCâ€1α gene expression. Physiological Reports, 2019, 7, e14082.	0.7	5
124	The Active Review: One Final Task to End the Lecture. American Journal of Physiology - Advances in Physiology Education, 2007, 31, 236-237.	0.8	4
125	Carbohydrate for endurance athletes in competition questionnaire (CEAC-Q): validation of a practical and time-efficient tool for knowledge assessment. Sport Sciences for Health, 2022, 18, 235-247.	0.4	4
126	Three weeks of a home-based "sleep low-train low―intervention improves functional threshold power in trained cyclists: A feasibility study. PLoS ONE, 2021, 16, e0260959.	1.1	4

#	Article	IF	CITATIONS
127	p53: the tumour suppressor turns mitochondrial regulator. Journal of Physiology, 2013, 591, 3455-3456.	1.3	3
128	The change in external match loads and characteristics for a newly promoted European super league rugby league team over a three season period. Science and Medicine in Football, 2018, 2, 309-314.	1.0	3
129	A pilot sequential multiple assignment randomized trial (SMART) protocol for developing an adaptive coaching intervention around a mobile application for athletes to improve carbohydrate periodization behavior. Contemporary Clinical Trials Communications, 2022, 26, 100899.	0.5	2
130	Carbohydrate Metabolism During Exercise. , 2019, , 251-270.		1
13	Development of anthropometric characteristics in professional Rugby League players: Is there too much emphasis on the preâ€season period?. European Journal of Sport Science, 2020, 20, 1013-1022.	1.4	1
13:	Reply to B. Kay. American Journal of Physiology - Advances in Physiology Education, 2008, 32, 246-247.	0.8	1
13	Reply to "Letter to the Editor Re: Scott S.N., et al. Nutrients 2019, 11(5), 1022― Nutrients, 2019, 11, 2699.	1.7	0