James R Bolton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8510008/publications.pdf

Version: 2024-02-01

200 papers

14,105 citations

59 h-index 21540 114 g-index

208 all docs 208 docs citations

208 times ranked 9778 citing authors

#	Article	IF	CITATIONS
1	Standardization of Methods for Fluence (UV Dose) Determination in Bench-Scale UV Experiments. Journal of Environmental Engineering, ASCE, 2003, 129, 209-215.	1.4	962
2	Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry, 2001, 73, 627-637.	1.9	874
3	Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128, 1-13.	3.9	872
4	Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316, 495-500.	27.8	509
5	An Electron Spin Resonance Study of the Spin Adducts of OH and HO2 Radicals with Nitrones in the Ultraviolet Photolysis of Aqueous Hydrogen Peroxide Solutions. Canadian Journal of Chemistry, 1974, 52, 3549-3553.	1.1	418
6	Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2Suspensions. The Journal of Physical Chemistry, 1996, 100, 4127-4134.	2.9	397
7	Solar photoproduction of hydrogen: A review. Solar Energy, 1996, 57, 37-50.	6.1	322
8	Photolysis of aqueous free chlorine species (HOCl and OClÂ $-$) with 254 nm ultraviolet light. Journal of Environmental Engineering and Science, 2007, 6, 277-284.	0.8	306
9	Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Research, 1997, 31, 787-798.	11.3	264
10	Mechanism of the Degradation of 1,4-Dioxane in Dilute Aqueous Solution Using the UV/Hydrogen Peroxide Process. Environmental Science & Environmental S	10.0	231
11	Kinetics and Mechanism of the Degradation and Mineralization of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide. Environmental Science & Environmental Science	10.0	228
12	UV/H2O2 Treatment of Methyl tert-Butyl Ether in Contaminated Waters. Environmental Science & Environmental Science & Technology, 2000, 34, 659-662.	10.0	221
13	Photocatalytic Efficiency Variability in TiO2 Particles. The Journal of Physical Chemistry, 1995, 99, 4215-4224.	2.9	220
14	Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 166-169.	3.9	216
15	Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration¶. Photochemistry and Photobiology, 2003, 78, 146.	2.5	210
16	Assessment of the UV/Chlorine process as an advanced oxidation process. Water Research, 2011, 45, 1890-1896.	11.3	208
17	Inactivation of cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation. Water Research, 2001, 35, 1387-1398.	11.3	198
18	Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 Advanced Oxidation Process. Water Research, 2013, 47, 2881-2889.	11.3	185

#	Article	IF	CITATIONS
19	Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates, 2002, 28, 857-870.	2.7	182
20	Superoxide formation in spinach chloroplasts: Electron spin resonance detection by spin trapping. Biochemical and Biophysical Research Communications, 1975, 64, 803-807.	2.1	181
21	The Photochemical Generation of Hydroxyl Radicals in the UVâ^'vis/Ferrioxalate/H2O2System. Environmental Science & Environment	10.0	172
22	Degradation Pathways during the Treatment of Methyl tert-Butyl Ether by the UV/H2O2 Process. Environmental Science & Environme	10.0	168
23	Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water. Water Research, 2012, 46, 4677-4686.	11.3	158
24	Electron Spin Resonance Study of the Pairing Theorem for Alternant Hydrocarbons: 13C Splittings in the Anthracene Positive and Negative Ions. Journal of Chemical Physics, 1964, 40, 3307-3320.	3.0	145
25	Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst. Journal of Solid State Chemistry, 1995, 115, 236-239.	2.9	142
26	Using UV to inactivate Cryptosporidium. Journal - American Water Works Association, 2000, 92, 97-104.	0.3	142
27	Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide. Environmental Science & Emp; Technology, 1992, 26, 262-265.	10.0	141
28	Mediumâ€pressure UV for oocyst inactivation. Journal - American Water Works Association, 1999, 91, 86-94.	0.3	132
29	Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. Science of the Total Environment, 2015, 518-519, 49-57.	8.0	119
30	AN IDENTIFICATION OF THE RADICAL GIVING RISE TO THE LIGHTâ€INDUCED ELECTRON SPIN RESONANCE SIGNAL IN PHOTOSYNTHETIC BACTERIA. Photochemistry and Photobiology, 1969, 9, 209-218.	2.5	117
31	THE MAXIMUM EFFICIENCY OF PHOTOSYNTHESIS *. Photochemistry and Photobiology, 1991, 53, 545-548.	2.5	117
32	Optimal methods for quenching H2O2 residuals prior to UFC testing. Water Research, 2003, 37, 3697-3703.	11.3	112
33	Ferrioxalate-mediated solar degradation of organic contaminants in water. Solar Energy, 1996, 56, 439-443.	6.1	109
34	Reinvestigation of the Acetone Degradation Mechanism in Dilute Aqueous Solution by the UV/H2O2Process. Environmental Science &	10.0	108
35	A solar-driven UV/Chlorine advanced oxidation process. Water Research, 2012, 46, 5672-5682.	11.3	108
36	THE INVOLVEMENT OF THE HYDROXYL RADICAL IN THE DESTRUCTIVE PHOTOOXIDATION OF CHLOROPHYLLS <i>IN VIVO</i> AND <i>IN VITRO</i> *. Photochemistry and Photobiology, 1978, 28, 231-234.	2.5	105

#	Article	IF	CITATIONS
37	Intramolecular photochemical electron transfer. 2. Fluorescence studies of linked porphyrin-quinone compounds. Journal of the American Chemical Society, 1983, 105, 7224-7230.	13.7	104
38	Application of a Solar UV/Chlorine Advanced Oxidation Process to Oil Sands Process-Affected Water Remediation. Environmental Science & Environmental S	10.0	98
39	Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system. Water Research, 2017, 108, 348-355.	11.3	98
40	Mechanism of the photochemistry of p-benzoquinone in aqueous solutions. 1. Spin trapping and flash photolysis electron paramagnetic resonance studies. The Journal of Physical Chemistry, 1986, 90, 6266-6270.	2.9	97
41	Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: Information important for the determination of germicidal fluence (UVÂdose) in an ultraviolet disinfection of water. Water Research, 2009, 43, 5087-5096.	11.3	97
42	Rethinking the Concepts of Fluence (<scp>UV</scp> Dose) and Fluence Rate: The Importance of Photonâ€based Units – A Systemic Review. Photochemistry and Photobiology, 2015, 91, 1252-1262.	2.5	94
43	Intramolecular photochemical electron transfer. 4. Singlet and triplet mechanisms of electron transfer in a covalently linked porphyrin-amide-quinone molecule. Journal of the American Chemical Society, 1988, 110, 1733-1740.	13.7	90
44	Mechanism of photodegradation of aqueous organic pollutants. 1. EPR spin-trapping technique for the determination of hydroxyl radical rate constants in the photooxidation of chlorophenols following the photolysis of hydrogen peroxide. The Journal of Physical Chemistry, 1991, 95, 5116-5120.	2.9	90
45	Flash photolysis electron spin resonance studies of the electron acceptor species at low temperatures in Photosystem I of spinach subchloroplast particles. Biochimica Et Biophysica Acta - Bioenergetics, 1975, 376, 308-314.	1.0	88
46	Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants. Water Research, 2009, 43, 815-821.	11.3	87
47	Comparison of the Disinfection Effects of Vacuumâ€UV (VUV) and UV Light on <i>Bacillus subtilis</i> Spores in Aqueous Suspensions at 172, 222 and 254â€fnm. Photochemistry and Photobiology, 2010, 86, 176-181.	2.5	87
48	Inactivation of Giardia muris cysts using medium-pressure ultraviolet radiation in filtered drinking water. Water Research, 2000, 34, 4325-4332.	11.3	86
49	Requirements for ideal performance of photochemical and photovoltaic solar energy converters. The Journal of Physical Chemistry, 1990, 94, 8028-8036.	2.9	84
50	Intramolecular Photochemical Electron Transfer. 1. EPR and Optical Absorption Evidence for Stabilized Charge Separation in Linked Porphyrin-Quinone Molecules. Journal of the American Chemical Society, 1983, 105, 7215-7223.	13.7	79
51	The Iodide/Iodate Actinometer in UV Disinfection: Determination of the Fluence Rate Distribution in UV Reactors. Photochemistry and Photobiology, 2006, 82, 611.	2.5	78
52	VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS). Environmental Science & Echnology, 2016, 50, 5849-5856.	10.0	76
53	UV/chlorine control of drinking water taste and odour at pilot and full-scale. Chemosphere, 2015, 136, 239-244.	8.2	75
54	Basic Electron-Transfer Theory. Advances in Chemistry Series, 1991, , 7-23.	0.6	71

#	Article	IF	CITATIONS
55	Mechanism of the photochemistry of p-benzoquinone in aqueous solutions. 2. Optical flash photolysis studies. The Journal of Physical Chemistry, 1986, 90, 6270-6274.	2.9	67
56	Anatoxin-a degradation by Advanced Oxidation Processes: Vacuum-UV at 172 nm, photolysis using medium pressure UV and UV/H2O2. Water Research, 2010, 44, 278-286.	11.3	67
57	UV photolysis kinetics of sulfonamides in aqueous solution based on optimized fluence quantification. Water Research, 2015, 75, 43-50.	11.3	67
58	Flash photolysis/HPLC applications. 2. Direct photolysis vs. hydrogen peroxide mediated photodegradation of 4-chlorophenol as studied by a flash photolysis/HPLC technique. Environmental Science & En	10.0	66
59	Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum. Biochimica Et Biophysica Acta - Bioenergetics. 1974, 347, 126-133.	1.0	62
60	Application of UV Light–Emitting Diodes to Adenovirus in Water. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	60
61	Photochemical electron transfer in monolayer assemblies. 2. Photoelectric behavior in chlorophyll a/acceptor systems. Journal of the American Chemical Society, 1979, 101, 6342-6348.	13.7	59
62	Effects of Molecular Organization on Photophysical Behavior. 1. Steady-State Fluorescence and Fluorescence Quantum Yield Studies of Langmuirâ Blodgett Monolayers of Some Surfactant Porphyrins. Langmuir, 1998, 14, 6192-6198.	3.5	58
63	Orbital Degeneracy and the Electron Spin Resonance Spectrum of the Benzene-1-d Negative Ion. Journal of the American Chemical Society, 1964, 86, 520-521.	13.7	57
64	Relationship between Electron Spin Resonance Hyperfine Splittings and Ï€â€Electron Spin Densities. A Firstâ€Order Excess Charge Effect. Journal of Chemical Physics, 1965, 43, 309-310.	3.0	53
65	Structures, reduction potentials and absorption maxima of synthetic dyes of interest in photochemical solar-energy storage studies. Solar Energy, 1980, 24, 561-574.	6.1	53
66	Flash photolysis/HPLC method for studying the sequence of photochemical reactions: applications to 4-chlorophenol in aerated aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 58, 315-322.	3.9	53
67	Determination of Piâ€Electron Spin Densities in Aromatic Free Radicals by Linewidth Studies of Electron Spin Resonance Spectra: The 3,5â€Difluoronitrobenzene Anion. Journal of Chemical Physics, 1965, 42, 955-966.	3.0	52
68	Intramolecular photochemical electron transfer. 7. Temperature dependence of electron-transfer rates in covalently linked porphyrin-amide-quinone molecules. The Journal of Physical Chemistry, 1992, 96, 1718-1725.	2.9	50
69	Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution. Water Research, 1998, 32, 489-497.	11.3	50
70	Intramolecular photochemical electron transfer in a linked porphyrin–quinone molecule as a model for the primary step of photosynthesis. Nature, 1980, 286, 254-256.	27.8	49
71	FLASH PHOTOLYSISâ€ELECTRON SPIN RESONANCE: A KINETIC STUDY OF ENDOGENOUS LIGHTâ€INDUCED FREE RADICALS IN REACTION CENTER PREPARATIONS FROM ⟨i⟩RHODOPSEUDOMONAS SPHEROIDES⟨/i⟩*. Photochemistry and Photobiology, 1973, 18, 417-421.	2.5	45
72	Intramolecular photochemical electron transfer. 3. Solvent dependence of fluorescence quenching and electron transfer rates in a porphyrin-amide-quinone molecule. Journal of the American Chemical Society, 1985, 107, 6112-6114.	13.7	45

#	Article	IF	CITATIONS
73	Intramolecular photochemical electron transfer. Part 5.—Solvent dependence of electron transfer in a porphyrin–amide–quinone molecule. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1027.	1.0	45
74	Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Processes. Journal of Advanced Oxidation Technologies, 1996, 1, .	0.5	45
75	Simultaneous optical and electron spin resonance detection of the primary photoproduct P700 in green plant photosynthesis. Journal of the American Chemical Society, 1972, 94, 4351-4353.	13.7	44
76	Triplet state involvement in primary photochemistry of photosynthetic photosystem II. Nature, 1976, 263, 443-445.	27.8	42
77	Organic Pollutant Degradation in Water by the Vacuum-Ultraviolet/Ultraviolet/H ₂ O ₂ Process: Inhibition and Enhancement Roles of H ₂ O ₂ . Environmental Science & Environmental Science	10.0	42
78	Photochemical electron transfer in monolayer assemblies. 1. Spectroscopic study of radicals produced in chlorophyll a/acceptor systems. Journal of the American Chemical Society, 1979, 101, 6337-6341.	13.7	41
79	Reversible photooxidation of chlorophyll. Study of the chlorophyll-benzoquinone system utilizing flash photolysis and electron spin resonance spectroscopy. Journal of the American Chemical Society, 1972, 94, 3314-3320.	13.7	40
80	An Approach to Standardize Methods for Fluence Determination in Bench-Scale Pulsed Light Experiments. Food and Bioprocess Technology, 2016, 9, 1040-1048.	4.7	40
81	Electron spin resonance studies of ion association between alkali metals ions and hydrocarbon radical ions. The Journal of Physical Chemistry, 1970, 74, 1965-1976.	2.9	39
82	An electron spin resonance study of the cation radicals of dimethylhydroquinones. Journal of the American Chemical Society, 1968, 90, 5366-5370.	13.7	37
83	Intramolecular photochemical electron transfer. 6. Bridge and solvent dependence of electron transfer in covalently linked porphyrin-peptide-quinone compounds. The Journal of Physical Chemistry, 1991, 95, 6924-6927.	2.9	36
84	Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.). Water Research, 2016, 101, 157-166.	11.3	36
85	Flash photolysis — electron spin resonance studies of the dynamics of photosystem I: III temperature dependence of the decay of signal I. Biochemical and Biophysical Research Communications, 1974, 59, 872-878.	2.1	35
86	Intramolecular photochemical electron transfer to acceptors in a \hat{I}^2 -cyclodextrin linked to a porphyrin. Journal of the Chemical Society Chemical Communications, 1984, , 1138-1140.	2.0	35
87	In Situ Measurement of UV Fluence Rate Distribution by Use of a Micro Fluorescent Silica Detector. Environmental Science & Environmental Science & Env	10.0	35
88	Trace Organic Pollutant Removal by VUV/UV/chlorine Process: Feasibility Investigation for Drinking Water Treatment on a Mini-Fluidic VUV/UV Photoreaction System and a Pilot Photoreactor. Environmental Science & Environment	10.0	35
89	Configuration optimization of UV reactors for water disinfection with computational fluid dynamics: Feasibility of using particle minimum UV dose as a performance indicator. Chemical Engineering Journal, 2016, 306, 1-8.	12.7	34
90	Standard reporting of Electrical Energy per Order (<i>E</i> _{EO}) for UV/H ₂ O ₂ reactors (IUPAC Technical Report). Pure and Applied Chemistry, 2018, 90, 1487-1499.	1.9	34

#	Article	IF	Citations
91	Electron paramagnetic resonance spin trapping detection of short-lived radical intermediates in the direct photolysis of 4-chlorophenol in aerated aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 62, 229-240.	3.9	33
92	Effects of Molecular Organization on Photophysical Behavior. 2. Photoelectrochemical and Photocurrent Quantum Yield Studies of the Langmuirâ Blodgett Monolayers of Some Surfactant Porphyrins. Langmuir, 1998, 14, 6199-6206.	3.5	33
93	A Green Method to Determine VUV (185Ânm) Fluence Rate Based on Hydrogen Peroxide Production in Aqueous Solution. Photochemistry and Photobiology, 2018, 94, 821-824.	2.5	32
94	Anomalous Temperature Dependence in the Electron Spin Resonance Spectrum of Bis(trifluoromethyl) Nitroxide1. Journal of the American Chemical Society, 1966, 88, 371-373.	13.7	31
95	Light-induced paramagnetism in photosynthetic systems. Accounts of Chemical Research, 1974, 7, 189-195.	15.6	31
96	Synthesis of a model compound for the photosynthetic electron transfer. Tetrahedron Letters, 1985, 26, 5207-5210.	1.4	31
97	Impact of reflection on the fluence rate distribution in a UV reactor with various inner walls as measured using a micro-fluorescent silica detector. Water Research, 2012, 46, 3595-3602.	11.3	31
98	Deuterium Isotope Effects in the Electron Spin Resonance Spectra of Naphthalene Negative Ions. Journal of Chemical Physics, 1967, 47, 2149-2165.	3.0	30
99	Comment on the "Anomalous" ESR Spectrum Spread for Pentacene Anion and Cation Radicals. Journal of Chemical Physics, 1967, 46, 408-409.	3.0	30
100	MONOLAYER STUDIES OF 5-(4-CARBOXYPHENYL)-10,15,20-TRITOLYL-PORPHYRIN–I. OPTICAL STUDIES OF FILI AT THE AIR-WATER INTERFACE and OF FILMS TRANSFERRED ONTO SOLID SUBSTRATES. Photochemistry and Photobiology, 1984, 39, 735-746.	MS 2.5	30
101	MECHANISM OF THE PHOTOSENSITIZED REDOX REACTIONS OF ACRIDINE ORANGE IN AQUEOUS SOLUTIONS-A SYSTEM OF INTEREST IN THE PHOTOCHEMICAL STORAGE OF SOLAR ENERGY. Photochemistry and Photobiology, 1981, 34, 537-547.	2.5	30
102	Electron spin resonance spectrum of species "X―which may function as the primary electron acceptor in Photosystem I of green plant photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 1976, 430, 553-554.	1.0	29
103	Disinfection by-product formation during UV/Chlorine treatment of pesticides in a novel UV-LED reactor at 285Anm and the mitigation impact of GAC treatment. Science of the Total Environment, 2020, 712, 136413.	8.0	29
104	Analysis of the excess charge effect in alternant conjugated hydrocarbon radical-ions. The Journal of Physical Chemistry, 1967, 71, 3702-3704.	2.9	28
105	Simultaneous quantitative comparison of the optical changes at 700 nm (P700) and electron spin resonance signals in system I of green plant photosynthesis. Journal of the American Chemical Society, 1973, 95, 6435-6436.	13.7	28
106	Intramolecular Photochemical Electron Transfer. 8. Decay of the Triplet State in a Porphyrin-Quinone Molecule The Journal of Physical Chemistry, 1994, 98, 1626-1633.	2.9	28
107	The photochemical conversion and storage of solar energy: An historical perspective. Solar Energy Materials and Solar Cells, 1995, 38, 543-554.	6.2	28
108	Impact of inner-wall reflection on UV reactor performance as evaluated by using computational fluid dynamics: The role of diffuse reflection. Water Research, 2017, 109, 382-388.	11.3	28

#	Article	IF	CITATIONS
109	Practical Chemical Actinometry—A Review. Photochemistry and Photobiology, 2021, 97, 873-902.	2.5	28
110	PHOTOCHEMICAL ENERGY STORAGE: AN ANALYSIS OF LIMITS., 1981,, 297-339.		27
111	A Potential New Method for Determination of the Fluence (UV Dose) Delivered in UV Reactors Involving the Photodegradation of Free Chlorine. Water Environment Research, 2010, 82, 328-334.	2.7	27
112	Micropollutant Degradation by the UV/H ₂ O ₂ Process: Kinetic Comparison among Various Radiation Sources. Environmental Science & E	10.0	27
113	Photochemistry of 5-methylphenazinium salts in aqueous solution. 2. Optical flash photolysis and fluorescence results and a proposed mechanism. The Journal of Physical Chemistry, 1980, 84, 1909-1916.	2.9	26
114	Fluorescence lifetime of 5-(4-carboxyphenyl)-10,15,20-tritolylporphyrin in a mixed Langmuir-Blodgett film with dioleoylphosphatidylcholine. A proposed standard. Langmuir, 1988, 4, 133-136.	3.5	26
115	Fundamental approach to the fluence-based kinetic and electrical energy efficiency parameters in photochemical degradation reactions: polychromatic light. Journal of Environmental Engineering and Science, 2005, 4, S13-S18.	0.8	26
116	Light-induced intramolecular electron transfer from a porphyrin linked to a p-benzoquinone by a rigid spacer group. Journal of the Chemical Society Chemical Communications, 1985, , 559.	2.0	25
117	Observations of chemically induced dynamic electron polarization in photosystem I of green plants and algae. The Journal of Physical Chemistry, 1979, 83, 3309-3313.	2.9	24
118	Solvent dependence of photochemical electron-transfer rates in a covalently linked porphyrinâ€"quinone molecule. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 2305-2313.	1.1	24
119	Application of Engineered Si Nanoparticles in Light-Induced Advanced Oxidation Remediation of a Water-Borne Model Contaminant. ACS Nano, 2016, 10, 5405-5412.	14.6	24
120	Photochemistry of 5-methylphenazinium salts in aqueous solution. 1. Products and quantum yield of the reaction. The Journal of Physical Chemistry, 1980, 84, 1903-1908.	2.9	22
121	The importance of geminate pairs in the mechanism of photochemically induced dynamic electron polarization. A case of acetone ketyl radicals. The Journal of Physical Chemistry, 1981, 85, 12-14.	2.9	22
122	Photochemical storage of solar energy. Solar Energy, 1978, 20, 181-183.	6.1	21
123	FLASHâ€PHOTOLYSIS OF CHLORANIL AS STUDIED BY ELECTRON SPIN RESONANCE SPECTROSCOPY*. Photochemistry and Photobiology, 1970, 12, 239-243.	2.5	20
124	UV/H2O2 Degradation and Toxicity Reduction of Textile Azo Dyes: Remazol Black-B, a Case Study. Journal of Advanced Oxidation Technologies, 1997, 2, .	0.5	20
125	FLASH PHOTOLYSISâ€ELECTRON SPIN RESONANCE STUDIES OF THE DYNAMICS OF PHOTOSYSTEM I IN GREENâ€PLANT PHOTOSYNTHESISâ€I. EFFECTS OF ACCEPTORS AND DONORS IN SUBCHLOROPLAST PARTICLES* Photochemistry and Photobiology, 1974, 20, 251-262.	2.5	19
126	FLASH PHOTOLYSIS-ELECTRON SPIN RESONANCE STUDIES OF THE DYNAMICS OF PHOTOSYSTEM I IN GREEN-PLANT PHOTOSYNTHESIS—II. INTACT AND BROKEN SPINACH CHLOROPLASTS. Photochemistry and Photobiology, 1974, 20, 263-269.	2.5	19

#	Article	IF	Citations
127	MONOLAYER STUDIES OF 5â€(4 ARB―OXYPHENYL)â€10,15,20â€TRITOLYLâ€PORPHYRINâ€II. PHOTOVOLTA MULTILAYER SANDWICH CELLS*. Photochemistry and Photobiology, 1984, 40, 319-327.	IÇ.ŞTUDY	QĘ
128	Quantum Yield of the Iodide-Iodate Chemical Actinometer: Dependence on Wavelength and Concentration¶. Photochemistry and Photobiology, 2007, 78, 146-152.	2.5	18
129	Assignment of Hyperfine Splittings in Electron Spin Resonance Spectra by Linewidth Analyses. Journal of Chemical Physics, 1964, 41, 944-948.	3.0	16
130	THE RELATION OF THE ESR SIGNAL II TO ELECTRON TRANSPORT IN PHOTOSYSTEM II OF SPINACH CHLOROPLASTS. Photochemistry and Photobiology, 1974, 20, 245-250.	2.5	16
131	Development of a tri-parameter online monitoring system for UV disinfection reactors. Chemical Engineering Journal, 2013, 222, 101-107.	12.7	16
132	Nuclear magnetic and electron spin resonance evidence for the strength and site of attachement of N-methylphenazonium cation radical to sodium dodecyl sulfate micelles. Journal of the American Chemical Society, 1977, 99, 4502-4504.	13.7	15
133	Flash photolysis–HPLC method applied to the study of photodegradation reactions. Journal of the Chemical Society Chemical Communications, 1990, , 1596-1597.	2.0	15
134	Calculation of natural radiative lifetimes from the absorption and fluorescence properties of semiconductors and molecules. The Journal of Physical Chemistry, 1991, 95, 8453-8461.	2.9	15
135	Field data analysis of active chlorine-containing stormwater samples. Journal of Environmental Management, 2018, 206, 51-59.	7.8	15
136	A kinetic study of the production of light-induced ESR signals in Rhodospirillum rubrum chromatophores. Archives of Biochemistry and Biophysics, 1968, 126, 383-387.	3.0	14
137	Flash photolysis/high-performance liquid chromatography method for studying the sequence of photochemical reactions: direct photolysis of phenol. Environmental Science & Environmental Science & Pechnology, 1992, 26, 2524-2527.	10.0	14
138	UV disinfection of secondary water supply: Online monitoring with micro-fluorescent silica detectors. Chemical Engineering Journal, 2014, 255, 165-170.	12.7	14
139	Structure of ketyl radicals. Carbon-13 splitting in electron spin resonance spectrum of hexafluoroacetone ketyl. Journal of the American Chemical Society, 1969, 91, 5411-5412.	13.7	13
140	MECHANISM OF THE PHOTOSENSITIZED REDOX REACTIONS OF ACRIDINE ORANGE IN AQUEOUS SOLUTIONS-A SYSTEM OF INTEREST IN THE PHOTOCHEMICAL STORAGE OF SOLAR ENERGY. Photochemistry and Photobiology, 1981, 34, 537-547.	2.5	13
141	In situ detailed fluence rate distributions in a UV reactor with multiple low-pressure lamps: Comparison of experimental and model results. Chemical Engineering Journal, 2013, 214, 55-62.	12.7	13
142	Inspection of Feasible Calibration Conditions for <scp>UV</scp> Radiometer Detectors with the <scp>KI</scp> / <scp>KIO</scp> ₃ Actinometer. Photochemistry and Photobiology, 2015, 91, 68-73.	2.5	13
143	Impact of environmental conditions on bacterial photoreactivation in wastewater effluents. Environmental Sciences: Processes and Impacts, 2017, 19, 31-37.	3.5	13
144	Monochloramine loss mechanisms and dissolved organic matter characterization in stormwater. Science of the Total Environment, 2018, 631-632, 745-754.	8.0	13

#	Article	IF	CITATIONS
145	THE ACCELERATING ACTION OF 5–METHYLPHENAZINIUM METHYL SULFATE ON LIGHT INDUCED ABSORBANCY AND ESR CHANGES IN RHODOSPIRILLUM CHROMATOPHORES*. Photochemistry and Photobiology, 1966, 5, 823-826.	2.5	12
146	Electron Spin Resonance Study of the Pairing Theorem for Alternant Hydrocarbons. II. 13C Hyperfine Splittings in the Positive and Negative Ions of Biphenylene. Journal of Chemical Physics, 1968, 48, 4703-4708.	3.0	12
147	A study of chemically induced dynamic electron polarization (CIDEP) in Photosystem I of whole algal cells at ambient temperatures. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 765, 68-73.	1.0	11
148	Solar detoxification. Solar Energy, 1996, 56, 375.	6.1	11
149	Development of a Protocol for the Determination of the Ultraviolet Sensitivity of Microorganisms Suspended in Air. Aerosol Science and Technology, 2009, 43, 284-289.	3.1	11
150	Monochloramine Loss Mechanisms in Tap Water. Water Environment Research, 2017, 89, 1999-2005.	2.7	11
151	Thermodynamic limits on conversion of solar energy to work or stored energyâ€"Effects of temperature, intensity and atmospheric conditions. Solar Energy, 1984, 32, 75-84.	6.1	10
152	Time resolution enhancement technique applied to a study of the absolute rate of reaction of ketyl radicals with a spin trap using flash photolysis electron paramagnetic resonance. The Journal of Physical Chemistry, 1985, 89, 3343-3347.	2.9	10
153	Solvent, Temperature, and Bridge Dependence of Photoinduced Intramolecular Electron Transfer. Advances in Chemistry Series, 1991, , 117-131.	0.6	10
154	Estimating the fluence delivery in UV disinfection reactors using a â€~detector-model' combination method. Chemical Engineering Journal, 2013, 233, 39-46.	12.7	10
155	CIDEP in the photosystems of green plant photosynthesis. Reviews of Chemical Intermediates, 1979, 3, 121-129.	1.1	9
156	Introduction to Electron Transfer in Inorganic, Organic, and Biological Systems. Advances in Chemistry Series, 1991, , 1-6.	0.6	9
157	Figures-of-Merit for Advanced Oxidation Technologies: A Comparison of Homogeneous UV/H2O2, Heterogeneous UV/TiO2 and Electron Beam Processes. Journal of Advanced Oxidation Technologies, 1998, 3, .	0.5	9
158	TERMS AND DEFINITIONS IN ULTRAVIOLET DISINFECTION. Proceedings of the Water Environment Federation, 2000, 2000, 25-40.	0.0	9
159	Development of monitored tunable biodosimetry for fluence validation in an ultraviolet disinfection reactor. Separation and Purification Technology, 2013, 117, 12-17.	7.9	9
160	Solar cellsâ€"A technology assessment. Solar Energy, 1983, 31, 483-502.	6.1	8
161	ESR and optical evidence for two distinct porphyrin triplet states in linked porphyrin-quinone molecules. The Journal of Physical Chemistry, 1986, 90, 5640-5646.	2.9	8
162	A Mini-Fluidic UV Photoreaction System for Bench-Scale Photochemical Studies. Environmental Science and Technology Letters, 2015, 2, 297-301.	8.7	8

#	Article	IF	Citations
163	Experimental Assessment of Photon Fluence Rate Distributions in a Medium-Pressure UV Photoreactor. Environmental Science & Env	10.0	8
164	FLASH PHOTOLYSISâ€ELECTRON SPIN RESONANCE STUDIES OF THE INTERACTION OF PHENAZINE METHOSULFATE WITH REACTIONâ€CENTER PREPARATIONS FROM THE Râ€26 MUTANT OF <i>RHODOPSEUDOMONAS SPHEROIDES </i> *. Photochemistry and Photobiology, 1973, 18, 423-428.	2.5	6
165	Combined optical and electron spin resonance kinetic spectrometer. Review of Scientific Instruments, 1976, 47, 201-204.	1.3	6
166	A Master Equation for Photochemical Rates. Photochemistry and Photobiology, 2020, 96, 1355-1357.	2.5	6
167	Solar Energy Conversion in Photosynthesis — Features Relevant to Artificial Systems for the Photochemical Conversion of Solar Energy. , 1979, , 31-50.		6
168	The utilization of time-resolved dielectric loss to probe the role of the surface in heterogeneous photochemistry. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 3625.	1.0	5
169	Ultraviolet actinometry – Determination of the incident photon flux and quantum yields for photochemical systems using low-pressure and ultraviolet light-emitting diode light sources. Journal of Environmental Chemical Engineering, 2022, 10, 107947.	6.7	5
170	Proton hyperfine structure from water ligands in electron spin resonance spectra of aqueous titanium(III) complexes with alcohols. Journal of the American Chemical Society, 1970, 92, 6354-6355.	13.7	4
171	Solar Electricity: Lessons Gained from Photosynthesis. ACS Symposium Series, 1983, , 3-19.	0.5	4
172	Detection of a new photoinduced electron paramagnetic resonance signal in particle dispersions of metal-free .alpha, .beta and x-phthalocyanine. The Journal of Physical Chemistry, 1983, 87, 862-867.	2.9	4
173	A flash photolysis-electron paramagnetic resonance study of light-generated paramagnetic charge carriers in metal-free .alpha, .beta and x-phthalocyanines. The Journal of Physical Chemistry, 1983, 87, 868-872.	2.9	4
174	A review of analytic solutions for a model p-n junction cell under low-injection conditions. Solar Energy Materials and Solar Cells, 1996, 40, 133-176.	6.2	4
175	Improved Method for Real-Time Fluence Monitoring in UV Reactors. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	4
176	Comparison of Hydrogen Peroxide to Ammonium Ions and Sulfite as a Free Chlorine Quenching Agent for Disinfection By-Product Measurement. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	4
177	Line-width effects in the electron spin resonance spectrum of the 2,5-dimethylhydroquinone cation radical. The Journal of Physical Chemistry, 1969, 73, 4387-4389.	2.9	3
178	Improvement of the 100-kHz instrument-limited time response for Varian E-Line EPR spectrometers. Journal of Magnetic Resonance, 1978, 32, 167.	0.5	3
179	Photochemical Aspects of Solar Energy Conversion and Storage. ACS Symposium Series, 1979, , 202-220.	0.5	3
180	Flash photolysis electron paramagnetic resonance studies of charge-carrier production in sublimed films of phthalocyanine. The Journal of Physical Chemistry, 1984, 88, 3139-3142.	2.9	3

#	Article	IF	CITATIONS
181	Monochloramine dissipation in storm sewer systems: field testing and model development. Water Science and Technology, 2018, 78, 2279-2287.	2.5	3
182	Comment on "Theoretical calculations on ions and radicals. I. A restricted Hartree-Fock perturbation method for the calculation of spin densities". The Journal of Physical Chemistry, 1967, 71, 3099-3100.	2.9	2
183	The synthesis of dibenzo[fg,op]naphthacene from biphenylene and lithium. Challenge, 1969, , 223.	0.4	2
184	A Rapid Scan Apparatus for Flash Photolysis Electron Spin Resonance. Review of Scientific Instruments, 1973, 44, 197-199.	1.3	2
185	CHEMICAL CONVERSION AND STORAGE OF SOLAR ENERGY - AN OVERVIEW. , 1986, , 1843-1859.		2
186	Thermalization of photoexcited molecules in solution. Research on Chemical Intermediates, 1994, 20, 909-926.	2.7	2
187	Quantum Yields for the Photodegradation of Pollutants in Dilute Aqueous Solution: Phenol, 4-Chlorophenol and N-Nitrosodimethylamine. Journal of Advanced Oxidation Technologies, 1996, 1, .	0.5	2
188	Discussion of "Standardized Collimated Beam Testing Protocol for Water∕Wastewater Ultraviolet Disinfection―by Jeff Kuo, Ching-lin Chen, and Margaret Nellor. Journal of Environmental Engineering, ASCE, 2005, 131, 827-827.	1.4	2
189	Using a mathematical fluence rate model to estimate the sensor readings in a multi-lamp ultraviolet reactor. Journal of Environmental Engineering and Science, 2005, 4, S27-S31.	0.8	2
190	Sensor factor correction for collimated beam experiments using a medium pressure ultraviolet lamp. Journal of Environmental Engineering and Science, 2008, 7, 677-679.	0.8	2
191	Revealing photon transmission in an ultraviolet reactor: Advanced approaches for measuring fluence rate distribution in water for model validation. Journal of Environmental Sciences, 2021, 110, 169-177.	6.1	2
192	Mechanism of Hyperfine Splittings in Conjugated Systems. , 1986, , 112-130.		1
193	Spectroscopic and Electrochemical Studies of Photochemical Electron Transfer in Linked Donor-Acceptor Molecules. , 1986, , 175-188.		1
194	Time-dependent Phenomena., 1986,, 192-222.		1
195	The analysis of the EPR spectrum of the 10-hydro-5-methylphenazinium cation radical. Journal of Magnetic Resonance, 1980, 37, 231-239.	0.5	0
196	Generation Efficiency of the Hydroxyl Radical Adduct of the DMPO Spin Trap in Homogeneous and Heterogeneous Media. Journal of Advanced Oxidation Technologies, $1996,1,.$	0.5	0
197	The importance of a photon-based approach to quantum yield determinations. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 81-84.	3.9	0
198	Impacts of biofilm on monochloramine decay in storm sewer systems: Direct reactions or AOB cometabolism. Biochemical Engineering Journal, 2019, 149, 107246.	3.6	0

#	Article	IF	CITATIONS
199	PHOTOBIOLOGY AND SOLAR ENERGY., 1981, , 261-271.		O
200	Analysis of Electron Spin Resonance Spectra of Systems in the Liquid Phase., 1986,, 49-86.		0