
Yicheng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8509893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	3.0	1,590
2	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	3.0	1,549
3	GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM <i>z</i> a^1/4 2.5 TO <i>z</i> 0.1. Astrophysical Journal, 2011, 742, 96.	i>â^1⁄4 1.6	590
4	STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS. Astrophysical Journal, Supplement Series, 2012, 203, 24.	3.0	410
5	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD. Astrophysical Journal, Supplement Series, 2013, 207, 24.	3.0	400
6	CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT <i>z</i> â ¹ /4 2. Astrophysical Journal, 2013, 765, 104.	1.6	367
7	CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT <i>z</i> â ¹ /4 2. Astrophysical Journal, 2012, 744, 148.	1.6	330
8	A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION. Astrophysical Journal, 2013, 775, 93.	1.6	290
9	SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 753, 114.	1.6	271
10	CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD. Astrophysical Journal, Supplement Series, 2013, 206, 10.	3.0	252
11	THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT. Astrophysical Journal, 2016, 825, 5.	1.6	243
12	Structural and Star-forming Relations since zÂâ^¼Â3: Connecting Compact Star-forming and Quiescent Galaxies. Astrophysical Journal, 2017, 840, 47.	1.6	180
13	Environmental effects on satellite galaxies: the link between concentration, size and colour profile. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1213-1228.	1.6	177
14	CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < <i>z</i> < 3. Astrophysical Journal, 2015, 800, 39.	1.6	172
15	galapagos: from pixels to parameters. Monthly Notices of the Royal Astronomical Society, 2012, 422, 449-468.	1.6	151
16	The alignment between the distribution of satellites and the orientation of their central galaxy. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1293-1302.	1.6	141
17	MULTI-WAVELENGTH VIEW OF KILOPARSEC-SCALE CLUMPS IN STAR-FORMING GALAXIES AT <i>z</i> â ¹ /4 2. Astrophysical Journal, 2012, 757, 120.	1.6	141
18	EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT <i>>z</i> >> 1. Astrophysical Journal, 2011, 742, 111.	1.6	131

#	Article	IF	CITATIONS
19	CANDELS OBSERVATIONS OF THE STRUCTURAL PROPERTIES OF CLUSTER GALAXIES AT <i>z</i> = 1.62. Astrophysical Journal, 2012, 750, 93.	1.6	130
20	Ongoing assembly of massive galaxies by major merging in large groups and clusters from the SDSS. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1537-1556.	1.6	129
21	CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip. Astrophysical Journal, Supplement Series, 2017, 229, 32.	3.0	127
22	THE RELATIVE ABUNDANCE OF COMPACT AND NORMAL MASSIVE EARLY-TYPE GALAXIES AND ITS EVOLUTION FROM REDSHIFT <i>z </i> $a^{1}/_{4}$ 2 TO THE PRESENT. Astrophysical Journal, 2011, 743, 96.	1.6	123
23	General design of hollow porous CoFe ₂ O ₄ nanocubes from metal–organic frameworks with extraordinary lithium storage. Nanoscale, 2014, 6, 15168-15174.	2.8	122
24	HOW DO STAR-FORMING GALAXIES AT <i>z</i> > 3 ASSEMBLE THEIR MASSES?. Astrophysical Journal, 2012, 752, 66.	1.6	122
25	ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT <i>z</i> â^¼ 3-4: LOOKING FOR ANALOGS OF "STELLAR RE-IONIZERS― Astrophysical Journal, 2012, 751, 70.	1.6	117
26	CANDELS/GOODS-S, CDFS, AND ECDFS: PHOTOMETRIC REDSHIFTS FOR NORMAL AND X-RAY-DETECTED GALAXIES. Astrophysical Journal, 2014, 796, 60.	1.6	117
27	CONSTRAINING THE ASSEMBLY OF NORMAL AND COMPACT PASSIVELY EVOLVING GALAXIES FROM REDSHIFT <i>z</i> = 3 TO THE PRESENT WITH CANDELS. Astrophysical Journal, 2013, 775, 106.	1.6	115
28	Structural properties of central galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1129-1149.	1.6	114
29	Observational Constraints on the Merger History of Galaxies since zÂâ‰^Â6: Probabilistic Galaxy Pair Counts in the CANDELS Fields. Astrophysical Journal, 2019, 876, 110.	1.6	114
30	The CANDELS/SHARDS Multiwavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates. Astrophysical Journal, Supplement Series, 2019, 243, 22.	3.0	111
31	A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS. Astrophysical Journal, 2015, 808, 101.	1.6	106
32	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	1.6	106
33	THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 780, 1.	1.6	103
34	The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Monthly Notices of the Royal Astronomical Society, 2019, 485, 382-395.	1.6	101
35	Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE - II. Redshift distribution and nature of the submillimetre galaxy population. Monthly Notices of the Royal Astronomical Society, 2012, 420, 957-985.	1.6	100
36	Giant clumps in simulated high- <i>z</i> Galaxies: properties, evolution and dependence on feedback. Monthly Notices of the Royal Astronomical Society, 2017, 464, 635-665.	1.6	100

#	Article	IF	CITATIONS
37	Accurate hierarchical control of hollow crossed NiCo ₂ O ₄ nanocubes for superior lithium storage. Nanoscale, 2014, 6, 5491-5497.	2.8	95
38	SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES. Astrophysical Journal, 2014, 795, 123.	1.6	91
39	A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES. Astrophysical Journal, 2010, 724, 425-447.	1.6	83
40	Texas Spectroscopic Search for Lyα Emission at the End of Reionization. III. The Lyα Equivalent-width Distribution and Ionized Structures at z > 7. Astrophysical Journal, 2020, 904, 144.	1.6	83
41	THE MORPHOLOGY OF PASSIVELY EVOLVING GALAXIES AT <i>z</i> â^¼ 2 FROM <i>HUBBLE SPACE TELESCOPE</i> /WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal Letters, 2010, 714, L79-L83.	3.0	82
42	Demographics of Star-forming Galaxies since zÂâ^1⁄4Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	1.6	79
43	STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO <i>z</i> = 2.5 IN CANDELS. Astrophysical Journal, 2013, 773, 149.	1.6	72
44	Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5Ââ‰ÂzÂ<Â3. Astrophysical Journal, 2018, 853, 108.	1.6	71
45	COLOR AND STELLAR POPULATION GRADIENTS IN PASSIVELY EVOLVING GALAXIES AT <i>z</i> â ⁻¹ /4 2 FROM <i>HST</i> /WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal, 2011, 735, 18.	1.6	70
46	Galaxy Zoo: CANDELS barred discs and bar fractionsâ~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 3466-3474.	1.6	70
47	KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT <i>z</i> ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES. Astrophysical Journal, 2014, 795, 145.	1.6	70
48	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^¼ 0.8. Astrophysical Journal, 2022, 926, 134.	1.6	70
49	THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM HÎ ² AND FUV. Astrophysical Journal, 2016, 833, 37.	1.6	69
50	Reconstructing the cosmic density field with the distribution of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2009, 394, 398-414.	1.6	67
51	Quenching as a Contest between Galaxy Halos and Their Central Black Holes. Astrophysical Journal, 2020, 897, 102.	1.6	66
52	CLUSTERING PROPERTIES OF B <i>z</i> K-SELECTED GALAXIES IN GOODS-N: ENVIRONMENTAL QUENCHING AND TRIGGERING OF STAR FORMATION AT <i>z</i> â^¼ 2. Astrophysical Journal, 2012, 756, 71.	1.6	65
53	EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3. Astrophysical Journal Letters, 2016, 820, L1.	3.0	65
54	Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy–galaxy pairs from zÂ=Â3 to zÂâ¹¼ÂO. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1549-1573.	1.6	65

#	Article	IF	CITATIONS
55	CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT <i>z</i> â ¹ /4 2. Astrophysical Journal, 2013, 774, 47.	1.6	64
56	STAGES: the Space Telescope A901/2 Galaxy Evolution Survey. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1275-1301.	1.6	63
57	Self-assembled hierarchical yolk–shell structured NiO@C from metal–organic frameworks with outstanding performance for lithium storage. Chemical Communications, 2014, 50, 9485-9488.	2.2	59
58	CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT <i>z</i> = 1.62. Astrophysical Journal, 2013, 773, 154.	1.6	58
59	Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1389-1399.	1.6	51
60	DISCOVERY OF COLD, PRISTINE GAS POSSIBLY ACCRETING ONTO AN OVERDENSITY OF STAR-FORMING GALAXIES AT REDSHIFT <i>z</i>	1.6	50
61	The Intrinsic Characteristics of Galaxies on the SFR–M _{â^—} Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence. Astrophysical Journal, 2018, 853, 131.	1.6	50
62	KINEMATIC DOWNSIZING AT z â^¼Â2. Astrophysical Journal, 2016, 830, 14.	1.6	44
63	The evolution of galaxy shapes in CANDELS: from prolate to discy. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5170-5191.	1.6	44
64	A WFC3 GRISM EMISSION LINE REDSHIFT CATALOG IN THE GOODS-SOUTH FIELD. Astronomical Journal, 2015, 149, 178.	1.9	43
65	CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT <i>z</i>	1.6	39
66	CAUGHT IN THE ACT: GAS AND STELLAR VELOCITY DISPERSIONS IN A FAST QUENCHING COMPACT STAR-FORMING GALAXY AT zÂâ^¼Â1.7. Astrophysical Journal, 2016, 820, 120.	1.6	39
67	LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT <i>z</i> â‰^ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, 2012, 761, 177.	1.6	38
68	PROPERTIES OF SUBMILLIMETER GALAXIES IN THE CANDELS GOODS-SOUTH FIELD. Astrophysical Journal, 2014, 785, 111.	1.6	38
69	Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 < <i>z</i> < 2 via principal component analysis. Monthly Notices of the Royal Astronomical Society, 2016, 458, 963-987.	1.6	38
70	Large-scale Structures in the CANDELS Fields: The Role of the Environment in Star Formation Activity. Astrophysical Journal, 2020, 890, 7.	1.6	37
71	REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ≲ <i>z</i> ≲ 3.5: SEARCHING FOR DUSTY STAR-FOR AND PASSIVELY EVOLVING GALAXIES. Astrophysical Journal, 2012, 749, 149.		35
72	UVI colour gradients of 0.4Â<ÂzÂ<Â1.4 star-forming main-sequence galaxies in CANDELS: dust extinction and star formation profiles. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4063-4082.	1.6	35

#	Article	IF	CITATIONS
73	THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD. Astronomical Journal, 2015, 150, 153.	1.9	32
74	Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm. Infrared Physics and Technology, 2020, 108, 103337.	1.3	31
75	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂâ‰⊠0.7: A POWER LAW WITH INCREASING S TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SCATTER	29
76	KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES. Astrophysical Journal, 2014, 797, 108.	1.6	28
77	Stellar masses of giant clumps in CANDELS and simulated galaxies using machine learning. Monthly Notices of the Royal Astronomical Society, 2020, 499, 814-835.	1.6	27
78	THE UV–OPTICAL COLOR GRADIENTS IN STAR-FORMING GALAXIES AT 0.5 < z < 1.5: ORIGINS AND LINK TO GALAXY ASSEMBLY. Astrophysical Journal Letters, 2016, 822, L25.	3.0	25
79	Evidence of Environmental Quenching at Redshift zÂâ‰^Â2. Astrophysical Journal, 2018, 862, 135.	1.6	25
80	THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT <i>z</i>	1.6	24
81	CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies. Astrophysical Journal Letters, 2017, 841, L22.	3.0	23
82	Structural and stellar-population properties versus bulge types in Sloan Digital Sky Survey central galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1686-1707.	1.6	23
83	An excess of globular clusters in Ultra-Diffuse Galaxies formed through tidal heating. Monthly Notices of the Royal Astronomical Society, 2021, 502, 398-406.	1.6	22
84	The Origins of UV–optical Color Gradients in Star-forming Galaxies at zÂâ^¼Â2: Predominant Dust Gradients but Negligible sSFR Gradients. Astrophysical Journal Letters, 2017, 844, L2.	3.0	20
85	NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES AT <i>z</i> â ¹ /4 2 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 793, 101.	1.6	18
86	Texas Spectroscopic Search for Lyα Emission at the End of Reionization. II. The Deepest Near-infrared Spectroscopic Observation at zÂ≳Â7. Astrophysical Journal, 2019, 877, 146.	1.6	16
87	PROBING OUTFLOWS IN <i>z</i> = 1 â^¼ 2 GALAXIES THROUGH Fe II/Fe II* MULTIPLETS. Astrophysical Journal, 2014, 793, 92.	1.6	14
88	On the Transition of the Galaxy Quenching Mode at 0.5Â<ÂzÂ<Â1 in CANDELS. Astrophysical Journal, 2018, 860, 60.	1.6	13
89	Evolution of the Gas Mass Fraction of Progenitors to Today's Massive Galaxies: ALMA Observations in the CANDELS GOODS-S Field. Astrophysical Journal, 2019, 878, 83.	1.6	13
90	Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5580-5593.	1.6	13

#	Article	IF	CITATIONS
91	Clump survival and migration in VDI galaxies: an analytical model versus simulations and observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 316-340.	1.6	13
92	Studying the physical properties of tidal features – I. Extracting morphological substructure in CANDELS observations and VELA simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2643-2659.	1.6	12
93	SERENDIPITOUS DISCOVERY OF A MASSIVE cD GALAXY AT <i>z</i> = 1.096: IMPLICATIONS FOR THE EARLY FORMATION AND LATE EVOLUTION OF cD GALAXIES. Astrophysical Journal, 2013, 769, 147.	1.6	11
94	No Evidence for Feedback: Unexceptional Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at Redshift z â^1/4 1. Astrophysical Journal, 2017, 841, 83.	1.6	11
95	THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT <i>Z</i> â ¹ /4 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS. Astrophysical Journal, 2015, 803, 104.	1.6	8
96	The Star Formation Rate–Radius Connection: Data and Implications for Wind Strength and Halo Concentration. Astrophysical Journal, 2020, 899, 93.	1.6	8
97	The Baltimore Oriole's Nest: Cool Winds from the Inner and Outer Parts of a Star-forming Galaxy at z = 1.3. Astrophysical Journal, 2022, 930, 146.	1.6	7
98	Fatigue Modeling Containing Hardening Particles and Grain Orientation for Aluminum Alloy FSW Joints. Materials, 2019, 12, 2024.	1.3	6
99	Spatial Locality of Galaxy Correlation Function in Phase Space: Samples from the 2MASS Extended Source Catalog. Astrophysical Journal, 2004, 610, 51-60.	1.6	5
100	Evidence for Non-smooth Quenching in Massive Galaxies at z $\hat{a}^{1}/4$ 1. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
101	Implications of Increased Central Mass Surface Densities for the Quenching of Low-mass Galaxies. Astrophysical Journal, 2021, 914, 7.	1.6	5
102	SURVEY DESIGN FOR SPECTRAL ENERGY DISTRIBUTION FITTING: A FISHER MATRIX APPROACH. Astrophysical Journal, 2012, 749, 72.	1.6	4
103	The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure. Astrophysical Journal, 2018, 854, 70.	1.6	4
104	Research on laser processing technology of instrument panel implicit weakening line based on neural network and genetic algorithm. Optik, 2020, 203, 163970.	1.4	4
105	Study on laser irradiation temperature field of carbon fiber reinforced plastic composites. Materials Research Express, 2020, 7, 035306.	0.8	3