Narayan Chandra Deb Nath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8509630/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chemistry, 2011, 128, 697-703.	4.2	145
2	Defective Carbon Nanosheets Derived from <i>Syzygium cumini</i> Leaves for Electrochemical Energy‣torage. ChemistrySelect, 2019, 4, 9079-9083.	0.7	63
3	Stand-alone photoconversion of carbon dioxide on copper oxide wire arrays powered by tungsten trioxide/dye-sensitized solar cell dual absorbers. Nano Energy, 2016, 25, 51-59.	8.2	58
4	Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Electrochimica Acta, 2013, 109, 39-45.	2.6	50
5	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	5.4	49
6	Electrochemical Impedance Spectroscopic Analysis of Sensitizationâ€Based Solar Cells. Israel Journal of Chemistry, 2015, 55, 990-1001.	1.0	45
7	Role of phytochemicals in the modulation of miRNA expression in cancer. Food and Function, 2017, 8, 3432-3442.	2.1	42
8	Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4333.	1.3	40
9	Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 1483-1488.	2.6	38
10	Identification of phenolic constituents and antioxidant activity of <i>Aloe barbadensis</i> flower extracts. Food and Agricultural Immunology, 2018, 29, 27-38.	0.7	26
11	Fermi energy level tuning for high performance dye sensitized solar cells using sp2 selective nitrogen-doped carbon nanotube channels. Physical Chemistry Chemical Physics, 2012, 14, 5255.	1.3	25
12	Binary redox electrolytes used in dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2019, 78, 53-65.	2.9	25
13	Deprotonation of N3 adsorbed on TiO2 for high-performance dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A, 2013, 1, 13439.	5.2	24
14	Interference-Free Determination of Dopamine at the Poly(thionine)-Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2011, 158, F106-F110.	1.3	22
15	Nanostructured copper–cobalt based spinel for the electrocatalytic H2O2 reduction reaction. Electrochimica Acta, 2018, 273, 474-482.	2.6	21
16	A facile template-free chemical synthesis of poly(thionine) nanowires. Chemical Physics Letters, 2013, 559, 56-60.	1.2	18
17	Halogen-free guanidinium-based perovskite solar cell with enhanced stability. RSC Advances, 2018, 8, 17365-17372.	1.7	15
18	Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application. Polymers, 2020, 12, 1666.	2.0	15

#	Article	IF	CITATIONS
19	Guanidine Nitrate (GuNO3) as an Efficient Additive in the Electrolyte of Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 201, 151-157.	2.6	14
20	Facile Electrochemical Synthesis of Highly Efficient Copper–Cobalt Oxide Nanostructures for Oxygen Evolution Reactions. Journal of the Electrochemical Society, 2020, 167, 026510.	1.3	14
21	Investigating the Role of I2SCNâ^ on the Fermi Level of Electrolyte for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 161, 95-99.	2.6	13
22	Optimization of hierarchical light-scattering layers in TiO2 photoelectrodes of dye-sensitized solar cells. Solar Energy, 2016, 134, 399-405.	2.9	13
23	Effects of Phenylalkanoic Acids as Co-Adsorbents on the Performance of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2013, 13, 7880-7885.	0.9	11
24	In Vitro Toxicity of 2D Materials. , 2019, , 165-186.		11
25	Therapeutic effects of <i>Ligularia stenocephala</i> against inflammatory bowel disease by regulating antioxidant and inflammatory mediators. Food and Agricultural Immunology, 2017, 28, 1142-1154.	0.7	10
26	Halide Perovskite Solar Cells with Biocompatibility. Advanced Energy and Sustainability Research, 2020, 1, 2000028.	2.8	10
27	Effects of TiCl ₄ Post-Treatment on the Efficiency of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 8870-8875.	0.9	9
28	Protective effect of oat (<i>Avena sativa</i>) bran extracts on acute hepatic liver damage in mice. Food and Agricultural Immunology, 2019, 30, 34-46.	0.7	9
29	Binary Redox Couples for Highly Transparent and High-Voltage Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2021, 10, 025007.	0.9	9
30	A non-absorbing organic redox couple for sensitization-based solar cells with metal-free polymer counter electrode. Electrochimica Acta, 2018, 286, 39-46.	2.6	8
31	Tio ₂ Paste Formulation for Crack-Free Mesoporous Nanocrystalline Film of Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 5361-5366.	0.9	7
32	Intercalation-type electrodes of copper–cobalt oxides for high-energy-density supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113947.	1.9	7
33	Effects of Polyaniline Additive in Solvent-Free Ionic Liquid Electrolyte for Dye-Sensitized Solar Cell. Bulletin of the Korean Chemical Society, 2010, 31, 3411-3414.	1.0	6
34	A Facile Synthesis of Granular ZnO Nanostructures for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	5
35	Selective Detection of Serotonin from the Interference by Ascorbic Acid and Uric Acid at Poly(thionine)-modified Glassy Carbon Electrode. Bulletin of the Korean Chemical Society, 2011, 32, 779-780.	1.0	5
36	Carbon Nanotubes on Fluorine-Doped Tin Oxide for Fabrication of Dye-Sensitized Solar Cells at Low Temperature Condition. Journal of Nanoscience and Nanotechnology, 2012, 12, 5373-5380.	0.9	3

#	Article	IF	CITATIONS
37	Large-Scale Production of APbX ₃ Perovskites in Powder Form with High Stability. Nanoscience and Nanotechnology Letters, 2018, 10, 1025-1034.	0.4	3
38	Low-Cost Perovskite Solar Cells Employing Carbon Black/Graphite Composite and Copper (I) Thiocyanate. Nanoscience and Nanotechnology Letters, 2018, 10, 479-485.	0.4	2
39	Effect of Water on the Performance of Dye-Sensitized Solar Cells with Quasi-Solid-State Electrolytes. Journal of Nanoscience and Nanotechnology, 2016, 16, 10575-10582.	0.9	1
40	Ethylene-Polypropylene Copolymer as an Effective Sealing Spacer for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 8045-8052.	0.9	1
41	Standâ€Alone Photoelectrochemical Energy Conversions. Solar Rrl, 2021, 5, 2000517.	3.1	1