Michael Lorenz

List of Publications by Citations

Source: https://exaly.com/author-pdf/8509610/michael-lorenz-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 351
 11,289
 49
 93

 papers
 citations
 h-index
 g-index

 370
 12,063
 3.1
 5.87

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
351	Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. <i>Applied Physics Letters</i> , 2003 , 83, 1974-1976	3.4	551
350	Infrared dielectric functions and phonon modes of high-quality ZnO films. <i>Journal of Applied Physics</i> , 2003 , 93, 126-133	2.5	545
349	High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. <i>Applied Physics Letters</i> , 2003 , 82, 3901-3903	3.4	539
348	Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. <i>Nanotechnology</i> , 2009 , 20, 332001	3.4	503
347	Room temperature ferromagnetism in ZnO films due to defects. <i>Applied Physics Letters</i> , 2008 , 92, 0825	0§.4	310
346	Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section. <i>Physical Review Letters</i> , 2004 , 93, 103903	7.4	270
345	Defect-induced magnetic order in pure ZnO films. <i>Physical Review B</i> , 2009 , 80,	3.3	257
344	The 2016 oxide electronic materials and oxide interfaces roadmap. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 433001	3	204
343	MgxZn1⊠O(0?x. <i>Applied Physics Letters</i> , 2005 , 86, 143113	3.4	181
342	Room temperature ferromagnetism in carbon-implanted ZnO. <i>Applied Physics Letters</i> , 2008 , 93, 232507	3.4	178
341	Whispering gallery mode lasing in zinc oxide microwires. <i>Applied Physics Letters</i> , 2008 , 92, 241102	3.4	178
340	Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. <i>Nature Communications</i> , 2017 , 8, 16076	17.4	164
339	Dielectric functions (1 to 5 eV) of wurtzite MgxZn1NO (x?0.29) thin films. <i>Applied Physics Letters</i> , 2003 , 82, 2260-2262	3.4	157
338	Mean barrier height of Pd Schottky contacts on ZnO thin films. <i>Applied Physics Letters</i> , 2006 , 88, 092102	² 3.4	146
337	Two-dimensional electron gas density in AllMInxN/AlN/GaN heterostructures (0.03MD.23). <i>Journal of Applied Physics</i> , 2008 , 103, 093714	2.5	138
336	Optical and electrical properties of epitaxial (Mg,Cd)xZn1NO, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition. <i>Solid-State Electronics</i> , 2003 , 47, 2205-2209	1.7	130
335	Defects in virgin and N+-implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy. <i>Physical Review B</i> , 2006 , 74,	3.3	129

(2010-2016)

334	Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12929-12933	11.5	126
333	Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. <i>Advanced Materials</i> , 2010 , 22, 5332-49	24	122
332	Transparent semiconducting oxides: materials and devices. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 1437-1449	1.6	120
331	Cuprous iodide 🗈 p-type transparent semiconductor: history and novel applications. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1671-1703	1.6	111
330	Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition. <i>Nanotechnology</i> , 2007 , 18, 455707	3.4	96
329	Lateral homogeneity of Schottky contacts on n-type ZnO. Applied Physics Letters, 2004, 84, 79-81	3.4	95
328	Cuprous iodide (b) p-type transparent semiconductor: history and novel applications (Phys. Status Solidi A 9 (1013)). <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210,	1.6	86
327	Large-area double-side pulsed laser deposition of YBa2Cu3O7⊠ thin films on 3-in. sapphire wafers. <i>Applied Physics Letters</i> , 1996 , 68, 3332-3334	3.4	85
326	Multiferroic BaTiO3 B iFeO3composite thin films and multilayers: strain engineering and magnetoelectric coupling. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 135303	3	83
325	Anionic and cationic substitution in ZnO. <i>Progress in Solid State Chemistry</i> , 2009 , 37, 153-172	8	81
324	Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. <i>Applied Physics Letters</i> , 2007 , 91, 092503	3.4	80
323	Metal-insulator transition in Co-doped ZnO: Magnetotransport properties. <i>Physical Review B</i> , 2006 , 73,	3.3	77
322	Spatially Inhomogeneous Impurity Distribution in ZnO Micropillars. <i>Nano Letters</i> , 2004 , 4, 797-800	11.5	74
321	Infrared optical properties of MgxZn1\(\text{NO} \) thin films (0?x?1): Long-wavelength optical phonons and dielectric constants. <i>Journal of Applied Physics</i> , 2006 , 99, 113504	2.5	72
320	Room-temperature Domain-epitaxy of Copper Iodide Thin Films for Transparent CuI/ZnO Heterojunctions with High Rectification Ratios Larger than 10(9). <i>Scientific Reports</i> , 2016 , 6, 21937	4.9	69
319	Properties of reactively sputtered Ag, Au, Pd, and Pt Schottky contacts on n-type ZnO. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1769		68
318	Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd). <i>Superlattices and Microstructures</i> , 2007 , 42, 231-235	2.8	67
317	Whispering gallery modes in zinc oxide micro- and nanowires. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 1282-1293	1.3	66

316	UV optical properties of ferromagnetic Mn-doped ZnO thin films grown by PLD. <i>Thin Solid Films</i> , 2005 , 486, 117-121	2.2	65
315	Infrared dielectric functions and phonon modes of wurtzite MgxZn1NO (x?0.2). <i>Applied Physics Letters</i> , 2002 , 81, 2376-2378	3.4	64
314	Deep acceptor states in ZnO single crystals. <i>Applied Physics Letters</i> , 2006 , 89, 092122	3.4	63
313	Tin-assisted heteroepitaxial PLD-growth of EGa2O3 thin films with high crystalline quality. <i>APL Materials</i> , 2019 , 7, 022516	5.7	63
312	Occurrence of rotation domains in heteroepitaxy. <i>Physical Review Letters</i> , 2010 , 105, 146102	7.4	62
311	ZnO metal-semiconductor field-effect transistors with Ag-Schottky gates. <i>Applied Physics Letters</i> , 2008 , 92, 192108	3.4	62
310	sd exchange interaction induced magnetoresistance in magnetic ZnO. <i>Physical Review B</i> , 2007 , 76,	3.3	61
309	Lattice parameters and Raman-active phonon modes of E(AlxGa1\(\mathbb{R}\))2O3. <i>Journal of Applied Physics</i> , 2015 , 117, 125703	2.5	59
308	Structural characterization of a-plane Zn1\(\text{QCdxO} \) (0?x?0.085) thin films grown by metal-organic vapor phase epitaxy. <i>Journal of Applied Physics</i> , 2006 , 99, 023514	2.5	59
307	Electron paramagnetic resonance of Zn1MmxO thin films and single crystals. <i>Physical Review B</i> , 2005 , 72,	3.3	58
306	Defect-induced ferromagnetism in undoped and Mn-doped zirconia thin films. <i>Physical Review B</i> , 2010 , 82,	3.3	57
305	Spin manipulation in Co-doped ZnO. <i>Physical Review Letters</i> , 2008 , 101, 076601	7.4	55
304	Refractive indices and band-gap properties of rocksalt MgxZn1\(\text{Mg}\) (0.68?x?1). <i>Journal of Applied Physics</i> , 2006 , 99, 123701	2.5	51
303	Hard amorphous CSi x N y thin films deposited by RF nitrogen plasma assisted pulsed laser ablation of mixed graphite/Si 3 N 4 -targets. <i>Thin Solid Films</i> , 1999 , 348, 103-113	2.2	50
302	Correlation of magnetoelectric coupling in multiferroic BaTiO3-BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. <i>Applied Physics Letters</i> , 2015 , 106, 012905	3.4	49
301	Resistive hysteresis and interface charge coupling in BaTiO3-ZnO heterostructures. <i>Applied Physics Letters</i> , 2009 , 94, 142904	3.4	49
300	Temperature-dependent dielectric and electro-optic properties of a ZnO-BaTiO3-ZnO heterostructure grown by pulsed-laser deposition. <i>Applied Physics Letters</i> , 2005 , 86, 091904	3.4	49
299	High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications. <i>IEEE Transactions on Applied Superconductivity</i> , 2001 , 11, 3209-3212	1.8	49

(2009-2015)

298	Structural and optical properties of (In,Ga)2O3 thin films and characteristics of Schottky contacts thereon. <i>Semiconductor Science and Technology</i> , 2015 , 30, 024005	1.8	47	
297	Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films. <i>Applied Physics Letters</i> , 2010 , 97, 243506	3.4	47	
296	Donor-like defects in ZnO substrate materials and ZnO thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 135-139	2.6	47	
295	Luminescence and surface properties of MgxZn1NO thin films grown by pulsed laser deposition. <i>Journal of Applied Physics</i> , 2007 , 101, 083521	2.5	47	
294	Cathodoluminescence of selected single ZnO nanowires on sapphire. <i>Annalen Der Physik</i> , 2004 , 13, 39-4	12 .6	47	
293	Fe-implanted ZnO: Magnetic precipitates versus dilution. <i>Journal of Applied Physics</i> , 2008 , 103, 023902	2.5	46	
292	Microstructure defects in YBCO thin films. <i>Physica C: Superconductivity and Its Applications</i> , 1995 , 243, 281-293	1.3	46	
291	Effect of rare-earth ion doping on the multiferroic properties of BiFeO3thin films grown epitaxially on SrTiO3(1 0 0). <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 175006	3	45	
290	Lattice parameters and Raman-active phonon modes of (InxGa1½)2O3 for x . <i>Journal of Applied Physics</i> , 2014 , 116, 013505	2.5	45	
289	p-type conducting ZnO:P microwires prepared by direct carbothermal growth. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 37-39	2.5	44	
288	Ordered growth of tilted ZnO nanowires: morphological, structural and optical characterization. <i>Nanotechnology</i> , 2007 , 18, 195303	3.4	42	
287	Pulsed Laser Deposition of ZnO-Based Thin Films. Springer Series in Materials Science, 2008, 303-357	0.9	40	
286	ExcitonBolariton formation at room temperature in a planar ZnO resonator structure. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 93, 331-337	1.9	40	
285	Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. <i>Physical Review B</i> , 2013 , 88,	3.3	39	
284	Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires. <i>Nanotechnology</i> , 2009 , 20, 305701	3.4	39	
283	Magnetoresistance and anomalous Hall effect in magnetic ZnO films. <i>Journal of Applied Physics</i> , 2007 , 101, 063918	2.5	39	
282	Side-selective and non-destructive determination of the critical current density of double-sided superconducting thin films. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 265, 335-340	1.3	39	
281	Ferromagnetic transition metal implanted ZnO: A diluted magnetic semiconductor?. <i>Vacuum</i> , 2009 , 83, S13-S19	3.7	38	

280	Self-organized growth of ZnO-based nano- and microstructures. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 1265-1281	1.3	38	
279	Homoepitaxy of ZnO by pulsed-laser deposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 129-131	2.5	38	
278	Room-temperature ferromagnetic Mn-alloyed ZnO films obtained by pulsed laser deposition. Journal of Magnetism and Magnetic Materials, 2006, 307, 212-221	2.8	38	
277	UVI/UV spectroscopic ellipsometry of ternary MgxZn1IIO (0III/0.53) thin films. <i>Thin Solid Films</i> , 2004 , 455-456, 500-504	2.2	38	
276	Dielectric function in the spectral range (0.58.5)eV of an (Alx Ga11)2O3 thin film with continuous composition spread. <i>Journal of Applied Physics</i> , 2015 , 117, 165307	2.5	37	
275	Paramagnetism in Co-doped ZnO films. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 085001	3	36	
274	ac susceptibility of structured YBa2Cu3O7 thin films in transverse magnetic ac fields. <i>Physical Review B</i> , 1997 , 55, 11816-11822	3.3	36	
273	Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells. <i>Nanotechnology</i> , 2008 , 19, 115202	3.4	36	
272	Interface polarization coupling in piezoelectric-semiconductor ferroelectric heterostructures. <i>Physical Review B</i> , 2010 , 81,	3.3	35	
271	Two-dimensional ZnO:Al nanosheets and nanowalls obtained by Al2O3-assisted carbothermal evaporation. <i>Thin Solid Films</i> , 2005 , 486, 191-194	2.2	34	
270	Structural and magnetic properties of epitaxial magnetite thin films prepared by pulsed laser deposition. <i>Journal of Magnetism and Magnetic Materials</i> , 1995 , 140-144, 725-726	2.8	34	
269	A comparison between ZnO films doped with 3d and 4f magnetic ions. <i>Thin Solid Films</i> , 2007 , 515, 8761	-87£3	33	
268	Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1☑)2O3. <i>Applied Physics Letters</i> , 2016 , 108, 123503	3.4	33	
267	Control of interface abruptness of polar MgZnO/ZnO quantum wells grown by pulsed laser deposition. <i>Applied Physics Letters</i> , 2010 , 97, 052101	3.4	32	
266	Exchange anisotropy in epitaxial Fe3O4/CoO and Fe3O4/CoxFe3NO4 bilayers grown by pulsed laser deposition. <i>Journal of Applied Physics</i> , 1998 , 84, 5097-5104	2.5	32	
265	Infrared dielectric functions and crystal orientation of a-plane ZnO thin films on r-plane sapphire determined by generalized ellipsometry. <i>Thin Solid Films</i> , 2004 , 455-456, 161-166	2.2	31	
264	Rectifying semiconductor-ferroelectric polarization loops and offsets in PtBaTiO3InOPt thin film capacitor structures. <i>Thin Solid Films</i> , 2005 , 486, 153-157	2.2	31	
263	Microcracks observed in epitaxial thin films of YBa2 Cu3O7Iand GdBa2Cu3O7II <i>Physica Status</i> Solidi A, 1995 , 150, 381-394		31	

(2012-2009)

262	Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells. <i>Thin Solid Films</i> , 2009 , 518, 1048-1052	2.2	30	
261	Optical properties of homo- and heteroepitaxial ZnO/MgxZn1-xO single quantum wells grown by pulsed-laser deposition. <i>Journal of Luminescence</i> , 2010 , 130, 520-526	3.8	30	
260	Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 31-34	2.6	30	
259	25 years of pulsed laser deposition. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 030301	3	29	
258	Tungsten oxide as a gate dielectric for highly transparent and temperature-stable zinc-oxide-based thin-film transistors. <i>Advanced Materials</i> , 2011 , 23, 5383-6	24	29	
257	Electron paramagnetic resonance in transition metal-doped ZnO nanowires. <i>Journal of Applied Physics</i> , 2007 , 101, 024324	2.5	29	
256	Infrared dielectric function and phonon modes of Mg-rich cubic MgxZn1⊠O(x?0.67) thin films on sapphire (0001). <i>Applied Physics Letters</i> , 2004 , 85, 905-907	3.4	29	
255	Microstructure and microwave surface resistance of typical YBaCuO thin films on sapphire and LaAlO3. <i>Superconductor Science and Technology</i> , 1999 , 12, 366-375	3.1	29	
254	Optical and structural properties of MgZnO/ZnO hetero- and double heterostructures grown by pulsed laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 99-104	2.6	28	
253	Large-area and double-sided pulsed laser deposition of Y-Ba-Cu-O thin films applied to HTSC microwave devices. <i>IEEE Transactions on Applied Superconductivity</i> , 1997 , 7, 1240-1243	1.8	27	
252	High electron mobility of phosphorous-doped homoepitaxial ZnO thin films grown by pulsed-laser deposition. <i>Journal of Applied Physics</i> , 2008 , 104, 013708	2.5	27	
251	Photocurrent spectroscopy of deep levels in ZnO thin films. <i>Physical Review B</i> , 2007 , 76,	3.3	27	
250	Electronic properties of defects in pulsed-laser deposition grown ZnO with levels at 300 and 370meV below the conduction band. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 378-381	2.8	27	
249	Fast, high-efficiency, and homogeneous room-temperature cathodoluminescence of ZnO scintillator thin films on sapphire. <i>Applied Physics Letters</i> , 2006 , 89, 243510	3.4	27	
248	Local lattice distortions in oxygen deficient Mn-doped ZnO thin films, probed by electron paramagnetic resonance. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4947	7.1	26	
247	Fresnoite thin films grown by pulsed laser deposition: photoluminescence and laser crystallization. <i>CrystEngComm</i> , 2011 , 13, 6377	3.3	26	
246	Magnetoresistance effects in Zn0.90Co0.10O films. <i>Journal of Applied Physics</i> , 2006 , 100, 013904	2.5	26	
245	Exchange bias and magnetodielectric coupling effects in ZnFe2O4 B aTiO3 composite thin films. <i>CrystEngComm</i> , 2012 , 14, 6477	3.3	25	

244	Ferroelectric thin film field-effect transistors based on ZnO/BaTiO3 heterostructures. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1789		25
243	Electrical properties of ZnO thin films and optical properties of ZnO-based nanostructures. <i>Superlattices and Microstructures</i> , 2005 , 38, 317-328	2.8	25
242	Epitaxial Coherence at Interfaces as Origin of High Magnetoelectric Coupling in Multiferroic BaTiO3 B iFeO3 Superlattices. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500822	4.6	25
241	Intense white photoluminescence emission of V-implanted zinc oxide thin films. <i>Journal of Applied Physics</i> , 2008 , 104, 123504	2.5	24
240	Properties of phosphorus doped ZnO. Applied Physics A: Materials Science and Processing, 2007, 88, 125	5-128	24
239	Epitaxial stabilization of single phase $\mathbb{E}[\ln x Ga1 \mathbb{E}]$ 203 thin films up to $x = 0.28$ on c-sapphire and $\mathbb{E}Ga2O3(001)$ templates by tin-assisted VCCS-PLD. <i>APL Materials</i> , 2019 , 7, 101102	5.7	24
238	Properties of Schottky Barrier Diodes on (In(x)Ga(1-x))DIfor 0.01 /k/D.85 Determined by a Combinatorial Approach. ACS Combinatorial Science, 2015 , 17, 710-5	3.9	23
237	On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M = Zn, Co, Ni). <i>Applied Physics Letters</i> , 2013 , 102, 172104	3.4	23
236	Ferrimagnetic ZnFe2O4 thin films on SrTiO3 single crystals with highly tunable electrical conductivity. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 438-440	2.5	23
235	Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3848		23
234	Room temperature ferromagnetism in Nd- and Mn-codoped ZnO films. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 105012	3	23
233	EPR study on magnetic Zn1⊠MnxO. <i>Superlattices and Microstructures</i> , 2005 , 38, 413-420	2.8	23
232	Inductive determination of the critical current density of superconducting thin films without lateral structuring. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 220, 209-214	1.3	23
231	Magnetic spin structure and magnetoelectric coupling in BiFeO3-BaTiO3 multilayer. <i>Applied Physics Letters</i> , 2015 , 106, 082904	3.4	22
230	Electrical properties of ZnOBaTiO3InO heterostructures with asymmetric interface charge distribution. <i>Applied Physics Letters</i> , 2009 , 95, 082902	3.4	22
229	Optical whispering gallery modes in dodecagonal zinc oxide microcrystals. <i>Superlattices and Microstructures</i> , 2007 , 42, 333-336	2.8	22
228	Homoepitaxial ZnO thin films by PLD: Structural properties. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 3280-3287		22
227	Electronic and optical properties of ZnO/(Mg,Zn)O quantum wells with and without a distinct quantum-confined Stark effect. <i>Journal of Applied Physics</i> , 2012 , 111, 063701	2.5	21

226	Oxide Thin Film Heterostructures on Large Area, with Flexible Doping, Low Dislocation Density, and Abrupt Interfaces: Grown by Pulsed Laser Deposition. <i>Laser Chemistry</i> , 2010 , 2010, 1-27		21
225	Origin of the near-band-edge luminescence in MgxZn1⊠O alloys. <i>Journal of Applied Physics</i> , 2010 , 107, 013704	2.5	21
224	Excitonic transport in ZnO. Journal of Materials Research, 2012, 27, 2225-2231	2.5	20
223	Low temperature photoluminescence and infrared dielectric functions of pulsed laser deposited ZnO thin films on silicon. <i>Thin Solid Films</i> , 2006 , 496, 234-239	2.2	20
222	Dielectric properties of Fe-doped BaxSr1NTiO3 thin films on polycrystalline substrates at temperatures between B5 and +85 °C. <i>Solid-State Electronics</i> , 2003 , 47, 2199-2203	1.7	20
221	Room-temperature cathodoluminescence of n-type ZnO thin films grown by pulsed laser deposition in N2, N2O, and O2 background gas. <i>Thin Solid Films</i> , 2005 , 486, 205-209	2.2	20
220	Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices. <i>Applied Physics Letters</i> , 2017 , 110, 102403	3.4	19
219	Interface-Charge-Coupled Polarization Response of Pt-BaTiO3-ZnO-Pt Heterojunctions: A Physical Model Approach. <i>Journal of Electronic Materials</i> , 2008 , 37, 1029-1034	1.9	19
218	Comparative study of optical and magneto-optical properties of normal, disordered, and inverse spinel-type oxides. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 429-436	1.3	18
217	Magnetoresistance in pulsed laser deposited 3d transition metal doped ZnO films. <i>Thin Solid Films</i> , 2006 , 515, 2549-2554	2.2	18
216	Solubility limit and material properties of a E(AlxGa1N)2O3 thin film with a lateral cation gradient on (00.1)Al2O3 by tin-assisted PLD. <i>APL Materials</i> , 2020 , 8, 021103	5.7	17
215	Visible emission from ZnCdO/ZnO multiple quantum wells. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 31-33	2.5	17
214	Stable p-type ZnO:P nanowire/n-type ZnO:Ga film junctions, reproducibly grown by two-step pulsed laser deposition. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1693		17
213	Comparative characterization of differently grown ZnO single crystals by positron annihilation and Hall effect. <i>Superlattices and Microstructures</i> , 2007 , 42, 259-264	2.8	17
212	Structural and optical properties of ZrO2 and Al2O3 thin films and Bragg reflectors grown by pulsed laser deposition. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 1240-1243		17
211	Epitaxial E(AlxGa1☑)2O3 thin films and heterostructures grown by tin-assisted VCCS-PLD. <i>APL Materials</i> , 2019 , 7, 111110	5.7	17
210	Correlation of Interface Impurities and Chemical Gradients with High Magnetoelectric Coupling Strength in Multiferroic BiFeO-BaTiO Superlattices. <i>ACS Applied Materials & Discourt & Dis</i>	<i>§</i> 6 ⁵ 18	965
209	Suppression of Grain Boundary Scattering in Multifunctional p-Type Transparent ECul Thin Films due to Interface Tunneling Currents. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701411	4.6	16

208	Modeling the electrical transport in epitaxial undoped and Ni-, Cr-, and W-doped TiO2 anatase thin films. <i>Applied Physics Letters</i> , 2014 , 105, 062103	3.4	16
207	(Zn,Cd)O thin films for the application in heterostructures: Structural and optical properties. <i>Journal of Applied Physics</i> , 2012 , 112, 103517	2.5	16
206	Temperature dependence of localization effects of excitons in ZnOftdxZn1HOftnO double heterostructures. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1741		16
205	Ion beam analysis of epitaxial (Mg, Cd)xZn1⊠O and ZnO:(Li, Al, Ga, Sb) thin films grown on c-plane sapphire. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 219-220, 891-896	1.2	16
204	Dependence of Trap Concentrations in ZnO Thin Films on Annealing Conditions. <i>Journal of the Korean Physical Society</i> , 2008 , 53, 2861-2863	0.6	16
203	Anisotropic strain relaxation through prismatic and basal slip in E(Al, Ga)2O3 on R-plane Al2O3. <i>APL Materials</i> , 2020 , 8, 021108	5.7	15
202	Induced ferromagnetism and magnetoelectric coupling in ion-beam synthesized BiFeO3toFe2O4nanocomposite thin films. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 325302	3	15
201	Defect-induced magnetism in homoepitaxial manganese-stabilized zirconia thin films. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 275002	3	15
200	Nonlinear ac susceptibility of high temperature superconducting rings. <i>Applied Physics Letters</i> , 1997 , 70, 898-900	3.4	15
199	ZnO based planar and micropillar resonators. Superlattices and Microstructures, 2007, 41, 360-363	2.8	15
198	Co location and valence state determination in ferromagnetic ZnO:Co thin films by atom-location-by-channeling-enhanced-microanalysis electron energy-loss spectroscopy. <i>Applied Physics Letters</i> , 2007 , 90, 154101	3.4	15
197	Advances of pulsed laser deposition of ZnO thin films. <i>Annalen Der Physik</i> , 2004 , 13, 59-60	2.6	15
196	Dielectric loss tangent of sapphire single crystal produced by edge-defined film-fed growth method. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 377, 313-318	1.3	15
195	Ag-doped double-sided PLD-YBCO thin films for passive microwave devices in future communication systems. <i>IEEE Transactions on Applied Superconductivity</i> , 1999 , 9, 1936-1939	1.8	15
194	Layer-by-layer growth of TiN by pulsed laser deposition on in-situ annealed (100) MgO substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 2621-2624	1.6	14
193	Degenerate interface layers in epitaxial scandium-doped ZnO thin films. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 065311	3	14
192	Vacuum ultraviolet dielectric function of ZnFe2O4 thin films. <i>Journal of Applied Physics</i> , 2013 , 113, 0735	023 ₅	14
191	Identification of a donor-related recombination channel in ZnO thin films. <i>Physical Review B</i> , 2010 , 81,	3.3	14

(2020-2010)

190	Luminescence properties of ZnO/Zn1½CdxO/ZnO double heterostructures. <i>Journal of Applied Physics</i> , 2010 , 107, 093530	2.5	14
189	ZnO-based metal-semiconductor field-effect transistors on glass substrates. <i>Applied Physics Letters</i> , 2009 , 95, 153503	3.4	14
188	Resistivity control of ZnO nanowires by Al doping. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 82-84	2.5	14
187	Weak ferromagnetism in textured Zn1⊠(TM)xO thin films. <i>Superlattices and Microstructures</i> , 2006 , 39, 334-339	2.8	14
186	Deep defects generated in n-conducting ZnO:TM thin films. Solid State Communications, 2006, 137, 417	-4:261	14
185	Electro-optical properties of ZnO-BaTiO3-ZnO heterostructures grown by pulsed laser deposition. <i>Annalen Der Physik</i> , 2004 , 13, 61-62	2.6	14
184	Linear defects in epitaxial Y-Ba-Cu-O films: their role in anisotropic vortex pinning and microwave surface resistance. <i>IEEE Transactions on Applied Superconductivity</i> , 2001 , 11, 3960-3963	1.8	14
183	Highly reproducible large-area and double-sided pulsed laser deposition of HTSC YBCO:Ag thin films for microwave applications. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, S905-S91	2.6	14
182	Large Area Pulsed Laser Deposition of YBCO Thin Films and Buffer Layers on 3-Inch Wafers. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 341, 189		14
181	High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition. <i>APL Materials</i> , 2020 , 8, 091115	5.7	14
180	Correlation of High Magnetoelectric Coupling with Oxygen Vacancy Superstructure in Epitaxial Multiferroic BaTiOBiFeOlComposite Thin Films. <i>Materials</i> , 2016 , 9,	3.5	14
179	Atomically stepped, pseudomorphic, corundum-phase (Al1-xGax)2O3 thin films (0 /k . <i>Applied Physics Letters</i> , 2018 , 113, 231902	3.4	14
178	Effect of annealing on the magnetic properties of zinc ferrite thin films. <i>Materials Letters</i> , 2017 , 195, 89-91	3.3	13
177	Doping efficiency and limits in (Mg,Zn)O:Al,Ga thin films with two-dimensional lateral composition spread. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2850-2855	1.6	13
176	Temperature-dependence of the refractive index and the optical transitions at the fundamental band-gap of ZnO. <i>AIP Conference Proceedings</i> , 2007 ,	О	13
175	Structure and ferromagnetism of Mn+ ion-implanted ZnO thin films on sapphire. <i>Superlattices and Microstructures</i> , 2006 , 39, 41-49	2.8	13
174	Growth and characterization of Mn- and Co-doped ZnO nanowires. <i>Mikrochimica Acta</i> , 2006 , 156, 21-25	5.8	13
173	Control of phase formation of (Al x Ga1 lk) 203 thin films on c-plane Al2O3. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 485105	3	13

172	Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors. <i>ACS Applied Materials & Common Semiconductors</i> , 13, 2807-	2819	13
171	Interface induced out-of-plane magnetic anisotropy in magnetoelectric BiFeO3-BaTiO3 superlattices. <i>Applied Physics Letters</i> , 2017 , 110, 092902	3.4	12
170	Impact of magnetization and hyperfine field distribution on high magnetoelectric coupling strength in BaTiO-BiFeO multilayers. <i>Nanoscale</i> , 2018 , 10, 5574-5580	7.7	12
169	Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3multilayers. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 184002	3	12
168	Magnetic anisotropy of epitaxial zinc ferrite thin films grown by pulsed laser deposition. <i>Thin Solid Films</i> , 2013 , 527, 273-277	2.2	12
167	Dielectric Passivation of ZnO-Based Schottky Diodes. <i>Journal of Electronic Materials</i> , 2010 , 39, 559-562	1.9	12
166	Mo/Si multilayers for EUV lithography by ion beam sputter deposition. <i>Vacuum</i> , 2003 , 71, 407-415	3.7	12
165	Microstructure and microwave surface resistance of YBaCuO thin films. <i>IEEE Transactions on Applied Superconductivity</i> , 1999 , 9, 2171-2174	1.8	12
164	On the phase formation of laser deposited Bi-Sr-Ca-Cu-O films on MgO, ZrO2 and silicon with YSZ buffer layers. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 182, 114-118	1.3	12
163	Modeling the conductivity around the dimensionality-controlled metal-insulator transition in LaNiO3/LaAlO3 (100) superlattices. <i>Applied Physics Letters</i> , 2015 , 106, 042103	3.4	11
162	Electronic transitions and dielectric function tensor of a YMnO3 single crystal in the NIR-VUV spectral range. <i>RSC Advances</i> , 2014 , 4, 33549-33554	3.7	11
161	Highly textured fresnoite thin films synthesizedin situby pulsed laser deposition with CO2laser direct heating. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 034013	3	11
160	Laser welding of sapphire wafers using a thin-film fresnoite glass solder. <i>Microsystem Technologies</i> , 2015 , 21, 1035-1045	1.7	11
159	Determination of the spontaneous polarization of wurtzite (Mg,Zn)O. <i>Applied Physics Letters</i> , 2014 , 104, 192102	3.4	11
158	Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells. <i>Physical Review B</i> , 2012 , 86,	3.3	11
157	Competing exciton localization effects due to disorder and shallow defects in semiconductor alloys. <i>New Journal of Physics</i> , 2010 , 12, 033030	2.9	11
156	MOVPE growth of GaN around ZnO nanopillars. <i>Journal of Crystal Growth</i> , 2008 , 310, 5139-5142	1.6	11
155	Spin polarization in Zn0.95Co0.05O:(Al,Cu) thin films. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 4920-4	- 1 9 24	11

(2008-2003)

154	Microwave properties of epitaxial large-area Ca-doped YBa2Cu3O7Ithin films on r-plane sapphire. <i>Solid-State Electronics</i> , 2003 , 47, 2183-2186	1.7	11
153	A novel method for the determination of the flux-creep exponent from higher harmonic ac-susceptibility measurements. <i>Physica C: Superconductivity and Its Applications</i> , 2005 , 417, 141-149	1.3	11
152	Quench propagation in large area YBCO films. <i>IEEE Transactions on Applied Superconductivity</i> , 1999 , 9, 1089-1092	1.8	11
151	Magnetic flux distribution inside an YBa2Cu3O7 superconducting thin film in the mixed state. <i>Physica B: Condensed Matter</i> , 1999 , 267-268, 149-153	2.8	11
150	XANES and XPS characterization of hard amorphous CSixNy thin films grown by RF nitrogen plasma assisted pulsed laser deposition. <i>FreseniusgJournal of Analytical Chemistry</i> , 1999 , 365, 244-248		11
149	Growth, structural and optical properties of coherent E(AlxGa1E)2O3/EGa2O3 quantum well superlattice heterostructures. <i>APL Materials</i> , 2020 , 8, 051112	5.7	11
148	Confinement-driven metal-insulator transition and polarity-controlled conductivity of epitaxial LaNiO3/LaAlO3 (111) superlattices. <i>Applied Physics Letters</i> , 2016 , 109, 082108	3.4	11
147	Laser-welded fused silica substrates using a luminescent fresnoite-based sealant. <i>Optics and Laser Technology</i> , 2016 , 80, 176-185	4.2	10
146	Strong exciton-photon coupling in ZnO based resonators. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1726		10
145	Magnetic and structural properties of transition metal doped zinc-oxide nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 766-770	1.3	10
	Optical properties of BaTiO3/ZnO heterostructures under the effect of an applied bias. Thin Solid		40
144	Films, 2011 , 519, 2933-2935	2.2	10
144		1.6	10
	Films, 2011 , 519, 2933-2935 X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica</i>		
143	X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2861-2866	1.6	10
143	X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2861-2866 Depinning of a driven vortex lattice in high-Tc films. <i>Physical Review B</i> , 1999 , 60, 4293-4301 Effect of L-shell spectator vacancy on X-ray fluorescence yields and relative intensities. <i>Journal of</i>	1.6	10
143 142 141	X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2861-2866 Depinning of a driven vortex lattice in high-Tc films. <i>Physical Review B</i> , 1999 , 60, 4293-4301 Effect of L-shell spectator vacancy on X-ray fluorescence yields and relative intensities. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, 6189-6195 Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films. <i>AIP Advances</i> ,	1.6 3.3	10
143 142 141 140	X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2861-2866 Depinning of a driven vortex lattice in high-Tc films. <i>Physical Review B</i> , 1999 , 60, 4293-4301 Effect of L-shell spectator vacancy on X-ray fluorescence yields and relative intensities. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, 6189-6195 Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films. <i>AIP Advances</i> , 2016 , 6, 125009 Growth control of nonpolar and polar quantum wells by pulsed-laser deposition. <i>Journal of Crystal</i>	1.6 3.3	10 10 10
143 142 141 140	X-ray spectroscopic investigation of forbidden direct transitions in CuGaO2 and CuInO2. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 2861-2866 Depinning of a driven vortex lattice in high-Tc films. <i>Physical Review B</i> , 1999 , 60, 4293-4301 Effect of L-shell spectator vacancy on X-ray fluorescence yields and relative intensities. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, 6189-6195 Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films. <i>AIP Advances</i> , 2016 , 6, 125009 Growth control of nonpolar and polar quantum wells by pulsed-laser deposition. <i>Journal of Crystal Growth</i> , 2013 , 364, 81-87 MgZnO/ZnO quantum well nanowire heterostructures with large confinement energies. <i>Journal of</i>	1.6 3.3 1.5	10 10 10 10

136	ZnO nanowall networks grown on DiMPLA pre-patterned thin gold films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 200-202	2.5	9
135	Temperature Dependent Hall Measurements on PLD Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		9
134	High-quality reproducible PLD YBatuth: Ag thin films up to 4 inch diameter for microwave applications. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 372-376, 587-589	1.3	9
133	Elemental depth profiling in Cu(In, Ga)Se2 solar cells using micro-PIXE on a bevelled section. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 231, 440-445	1.2	9
132	Structural properties of thin Zn0.62Cu0.19In0.19S alloy films grown on Si(111) substrates by pulsed laser deposition. <i>Thin Solid Films</i> , 2000 , 358, 80-85	2.2	9
131	CuAu-I type ordering and orientation domains in tetragonal Zn2仅xCuxInxS2 films (0.78如) crystallized on (001) gallium phosphide by pulsed laser deposition. <i>Thin Solid Films</i> , 2000 , 376, 82-88	2.2	9
130	Nonlocal In-Plane Resistance due to Vortex-Antivortex Dynamics in High- Tc Superconducting Films. <i>Physical Review Letters</i> , 1998 , 80, 4048-4051	7.4	9
129	Structural and Elastic Properties of $\#(AlxGa1\ 203)$ Thin Films on (11.0) Al2O3 Substrates for the Entire Composition Range. <i>Physica Status Solidi (B): Basic Research</i> , 2021 , 258, 2000394	1.3	9
128	Electronic excitations and structure of Li2IrO3 thin films grown on ZrO2:Y (001) substrates. <i>Journal of Applied Physics</i> , 2015 , 117, 025304	2.5	8
127	Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant. <i>Microsystem Technologies</i> , 2016 , 22, 207-214	1.7	8
126	Semiconducting oxide heterostructures. Semiconductor Science and Technology, 2011 , 26, 014040	1.8	8
125	MgZnO:P homoepitaxy by pulsed laser deposition: pseudomorphic layer-by-layer growth and high electron mobility 2009 ,		8
124	Homoepitaxial MgxZn1⊠O (0⊠0.22) thin films grown by pulsed laser deposition. <i>Thin Solid Films</i> , 2010 , 518, 4623-4629	2.2	8
123	Electronic coupling in ZnO/MgxZn1⊠O double quantum wells grown by pulsed-laser deposition. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 398-404	1.3	8
122	Effect of Growth-Induced Linear Defects on High Frequency Properties of Pulse-Laser Deposited YBa2Cu3O7IFilms. <i>Journal of Superconductivity and Novel Magnetism</i> , 2001 , 14, 105-114		8
121	Enhanced Magnetoelectric Coupling in BaTiO-BiFeO Multilayers-An Interface Effect. <i>Materials</i> , 2020 , 13,	3.5	8
120	From energy harvesting to topologically insulating behavior: ABO3-type epitaxial thin films and superlattices. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15575-15596	7.1	8
119	Two-dimensional Frank-van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition. <i>Journal of Materials Research</i> , 2017 , 32, 3936-3946	2.5	7

(2012-2012)

118	Persistent layer-by-layer growth for pulsed-laser homoepitaxy of \$(000bar 1)\$ ZnO. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 433-435	2.5	7	
117	Dopant activation in homoepitaxial MgZnO:P thin films. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1604		7	
116	Thermal stability of ZnO/ZnCdO/ZnO double heterostructures grown by pulsed laser deposition. Journal of Crystal Growth, 2011 , 328, 13-17	1.6	7	
115	Ion-beam analysis of CuInSe2 solar cells deposited on polyimide foil. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 379, 622-7	4.4	7	
114	Excess voltage in the vicinity of the superconducting transition in inhomogeneous YBa2Cu3O7 thin films. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 399, 22-42	1.3	7	
113	Macroscopic and microstructural properties of CSixNy thin films deposited by RF nitrogen-plasma-assisted pulsed laser deposition. <i>Applied Surface Science</i> , 2001 , 179, 156-160	6.7	7	
112	Defect structure of monocrystalline -oriented Zn0.62Cu0.19In0.19S films grown on GaP by pulsed laser deposition (PLD). <i>Journal of Crystal Growth</i> , 2000 , 209, 68-74	1.6	7	
111	Vacuum Ultraviolet Dielectric Function and Band Structure of ZnO. <i>Journal of the Korean Physical Society</i> , 2008 , 53, 88-93	0.6	7	
110	Magnetoelectric Coupling in Epitaxial Multiferroic BiFeO3BaTiO3 Composite Thin Films. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900613	1.3	7	
109	Laser soldering of sapphire substrates using a BaTiAl6O12 thin-film glass sealant. <i>Optics and Laser Technology</i> , 2016 , 81, 153-161	4.2	7	
108	Laser welding of fused silica glass with sapphire using a non- stoichiometric, fresnoitic Ba2TiSi2O8B SiO2 thin film as an absorber. <i>Optics and Laser Technology</i> , 2017 , 92, 85-94	4.2	6	
107	(55)Mn pulsed ENDOR spectroscopy of Mn(2+) ions in ZnO thin films and single crystal. <i>Journal of Magnetic Resonance</i> , 2014 , 245, 79-86	3	6	
106	X-ray multiple diffraction of ZnO substrates and heteroepitaxial thin films. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 850-863	1.3	6	
105	Interface charging effects in ferroelectric ZnOBaTiO3 field-effect transistor heterostructures. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 166-172	1.6	6	
104	Electrical transport and optical emission of MnxZr1-xO2(0&0.5) thin films. <i>Journal of Applied Physics</i> , 2011 , 110, 043706	2.5	6	
103	Optical characterization of zinc oxide microlasers and microwire core-shell heterostructures. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1780		6	
102	Electronic coupling in MgxZn1NO/ZnO double quantum wells. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1735		6	
101	Design rules of (Mg,Zn)O-based thin-film transistors with high-IWO3 dielectric gates. <i>Applied Physics Letters</i> , 2012 , 101, 183502	3.4	6	

100	The E3 Defect in Mg x Zn1⊠ O. <i>Journal of Electronic Materials</i> , 2010 , 39, 584-588	1.9	6
99	Electrical and optical spectroscopy on ZnO:Co thin films. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 157-160	2.6	6
98	Ferromagnetic behavior in Zn(Mn, P)O thin films. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2006 , 351, 323-326	2.3	6
97	Incorporation and electrical activity of group V acceptors in ZnO thin films. <i>AIP Conference Proceedings</i> , 2005 ,	Ο	6
96	Band-to-band transitions and optical properties of MgxZn1 \blacksquare O (0 ? x ? 1) films. AIP Conference Proceedings, 2005 ,	О	6
95	Depth profiling of Bi-Sr-Ca-Cu-O thin films by secondary neutrals mass spectroscopy. <i>Physica C:</i> Superconductivity and Its Applications, 1993 , 215, 445-457	1.3	6
94	Pulsed Laser Deposition 2019 , 1-29		5
93	Determination of unscreened exciton states in polar ZnO/(Mg,Zn)O quantum wells with strong quantum-confined Stark effect. <i>Physical Review B</i> , 2013 , 88,	3.3	5
92	Excitonic and Optical Confinement in Microwire Heterostructures with Nonpolar (Zn,Cd)O/(Mg,Zn)O Multiple Quantum Wells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9020-9024	3.8	5
91	Shallow Donors and Compensation in Homoepitaxial ZnO Thin Films. <i>Journal of Electronic Materials</i> , 2010 , 39, 595-600	1.9	5
90	Cathodoluminescence of large-area PLD grown ZnO thin films measured in transmission and reflection. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 89-93	2.6	5
89	Interface and Luminescence Properties of Pulsed Laser Deposited MgxZn1-xO/ZnO Quantum Wells with Strong Confinement. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		5
88	Polarization coupling in epitaxial ZnO / BaTiO 3 thin film heterostructures on SrTiO 3 (100) substrates 2007 , 6474, 290		5
87	Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 383, 374-378	1.3	5
86	Magnetic field distribution around flux-lines in YBa2Cu3O7 superconducting thin films in a parallel field. <i>Physica B: Condensed Matter</i> , 2000 , 276-278, 776-777	2.8	5
85	Large area pulsed laser deposition of YBCO thin films on 3-inch wafers. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 639-640	1.3	5
84	SNMS and XRD investigations of laser deposited YSZ buffer layers. <i>FreseniusgJournal of Analytical Chemistry</i> , 1993 , 346, 169-172		5
83	Magnetic Properties of Epitaxial Fe3O4 Films. <i>European Physical Journal Special Topics</i> , 1997 , 07, C1-59	93-C1-5	945

(2007-2020)

82	Epitaxial growth and strain relaxation of corundum-phase (Al,Ga)2O3 thin films from pulsed laser deposition at 1000 °C on r-plane Al2O3. <i>Applied Physics Letters</i> , 2020 , 117, 242102	3.4	5
81	LaNiO3 films with tunable out-of-plane lattice parameter and their strain-related electrical properties. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 1925-1930	1.6	4
80	Electrical transport in strained MgxZn1🛭O:P thin films grown by pulsed laser deposition on ZnO(000-1). <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 82-90	1.3	4
79	Ag related defect state in ZnO thin films 2010 ,		4
78	Electronic properties of shallow level defects in ZnO grown by pulsed laser deposition. <i>Journal of Physics: Conference Series</i> , 2008 , 100, 042038	0.3	4
77	Investigation of acceptor states in ZnO by junction DLTS. <i>Superlattices and Microstructures</i> , 2007 , 42, 14-20	2.8	4
76	Electrooptic ellipsometry study of piezoelectric BaTiO3-ZnO heterostructures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 1328-1331		4
75	Surface resistance measurements of surface and interface sides of YBa2Cu3O7 films on sapphire and LaAlO3. <i>Superconductor Science and Technology</i> , 2003 , 16, 412-415	3.1	4
74	Ion beam analysis of functional layers for CuInSe2 solar cells deposited on polymer foils. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 219-220, 693-698	1.2	4
73	Pulsed laser deposition of Fe- and Fe, Cu-doped ZnO thin films. <i>Annalen Der Physik</i> , 2004 , 13, 57-58	2.6	4
72	Controllable Growth of Copper Iodide for High-Mobility Thin Films and Self-Assembled Microcrystals. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3627-3632	4	4
71	Realization of highly rectifying Schottky barrier diodes and pn heterojunctions on EGa2O3 by overcoming the conductivity anisotropy. <i>Journal of Applied Physics</i> , 2021 , 130, 084502	2.5	4
70	Aluminium- and gallium-doped homoepitaxial ZnO thin films: Strain-engineering and electrical performance. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 1440-1447	1.6	3
69	From high-Tcsuperconductors to highly correlated Mott insulators 25 years of pulsed laser deposition of functional oxides in Leipzig. <i>Semiconductor Science and Technology</i> , 2015 , 30, 024003	1.8	3
68	Electrical Control of Magnetoresistance in Highly Insulating Co-Doped ZnO. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 043002	1.4	3
67	PLD Growth of High Reflective All-Oxide Bragg Reflectors for ZnO Resonators 2010 ,		3
66	Back-to-back substrate wafer bonding: A new approach to the fabrication of double-side coated wafers. <i>Applied Physics A: Materials Science and Processing</i> , 1997 , 64, 211-212	2.6	3
65	Photoluminescence of MgxZn1⊠O/ZnO Quantum Wells Grown by Pulsed Laser Deposition. <i>AIP Conference Proceedings</i> , 2007 ,	Ο	3

64	Band-Pass Filters for 1.8 GHz Frequency Range Using Double-Sided YBCO/Au Films on CeO2-Buffered Sapphire. <i>Journal of Superconductivity and Novel Magnetism</i> , 2001 , 14, 115-125		3
63	Nondestructive magneto-optical characterization of natural and artificial defects on 3" HTSC wafers at liquid nitrogen temperature. <i>IEEE Transactions on Applied Superconductivity</i> , 1999 , 9, 1840-1843.	8	3
62	Optimization of large area pulsed laser deposition of YBaCuO thin films by SNMS depth profiling and rutherford backscattering. <i>FreseniusgJournal of Analytical Chemistry</i> , 1995 , 353, 619-624		3
61	Sputtered and Reactively Grown Epitaxial GdAIO3 Films as Buffer Layers for C-Oriented YBa2Cu3O7-Erilms on R-Sapphire. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 357		3
60	Stoichiometric and structural analyses of thin high-Tc superconducting Bi-Sr-Ca-Cu-O films on silicon. <i>FreseniusgJournal of Analytical Chemistry</i> , 1991 , 341, 292-295		3
59	Refractive index dispersion and its temperature dependence in GaS. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1983 , 99, 437-440	3	3
58	Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays 2008, 113-125		3
57	Evidence for oxygen being a dominant shallow acceptor in p-type CuI. <i>APL Materials</i> , 2021 , 9, 051101 5.7	7	3
56	Azimuthal Anisotropy of Rhombohedral (Corundum Phase) Heterostructures. <i>Physica Status Solidi</i> (B): Basic Research, 2021 , 258, 2100104	3	3
55	Temperature dependent self-compensation in Al- and Ga-doped Mg0.05 Zn0.95O thin films grown by pulsed laser deposition. <i>Journal of Applied Physics</i> , 2016 , 120, 205703	5	3
54	Control of Optical Absorption and Emission of Sputtered Copper Iodide Thin Films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000431	5	3
53	Ferromagnetic phase transition and single-gap type electrical conductivity of epitaxial LaMnO3/LaAlO3superlattices. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 43LT02		2
52	Local zincblende coordination in heteroepitaxial wurtzite Zn1国MgxO:Mn thin films with 0.01 私 0.014	5	2
51	Temperature dependent dielectric function in the near-infrared to vacuum-ultraviolet ultraviolet spectral range of alumina and yttria stabilized zirconia thin films. <i>Journal of Applied Physics</i> , 2013 , 2.5114, 223509	5	2
50	Light beam induced current measurements on ZnO Schottky diodes and MESFETs. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1201, 84		2
49	Phosphorous doped ZnO nanowires: acceptor-related cathodoluminescence and p-type conducting FET-characteristics 2008 ,		2
48	Properties of homoepitaxial ZnO and ZnO:P thin films grown by pulsed-laser deposition 2008,		2
47	Temperature dependence of the whispering gallery effect in ZnO nanoresonators. <i>AIP Conference Proceedings</i> , 2007 ,		2

46	Defects in N+ ion-implanted ZnO single crystals studied by positron annihilation and Hall effect. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 3642-3645		2
45	Investigation of the free charge carrier properties at the ZnO-sapphire interface in a-plane ZnO films studied by generalized infrared ellipsometry. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 1350-1353		2
44	Growth and Characterization of ZnO Nano- and Microstructures 2008, 293-323		2
43	Investigation of temperature features forming the passband of microwave HTSc band-pass filter. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 372-376, 529-531	1.3	2
42	Optical Resonances Of Single Zinc Oxide Microcrystals. AIP Conference Proceedings, 2005,	Ο	2
41	Observation of proximity effect in YBCO/Au bilayer films by microwave surface resistance measurements. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 915-916	2.8	2
40	Defect Structure of Heteroepitaxial Zn2-2xCuxInxS2Layers Grown by Pulsed Laser Deposition on (111) Si, (001) Si and (001) GaP Substrates. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 210	1.4	2
39	Mechanical and Chemical Properties of CBxNy and CSixNy Thin Films Grown by N*-Plasma Assisted Pulsed Laser Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 541		2
38	Microstructure of YBCO and YBCO/SrTiO3/YBCO* PLD Thin Films on Sapphire for Microwave Applications. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 603, 163		2
37	Observation of Cu vacancies and their ordering in YBa2Cu4O8. <i>Applied Physics Letters</i> , 1996 , 69, 1151-	11 <u>5</u> .3	2
36	p-Type Doping and Alloying of CuI Thin Films with Selenium. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100214	2.5	2
35	Morphology-induced spin frustration in granular BiFeO3 thin films: Origin of the magnetic vertical shift. <i>Applied Physics Letters</i> , 2018 , 113, 142402	3.4	2
34	Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 07MC05	1.4	1
33	Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001). <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900627	1.3	1
32	Evolution of magnetization in epitaxial Zn1 \blacksquare Fe x O z thin films (0 ? x ? 0.66) grown by pulsed laser deposition. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 245003	3	1
31	Structure and cation distribution of (Mn0.5Zn0.5)Fe2O4 thin films on SrTiO3(001). <i>Journal of Applied Physics</i> , 2017 , 121, 225305	2.5	1
30	Surface chemistry evolution of F-doped Ni-base superalloy upon heat treatment. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2017 , 68, 220-227	1.6	1
29	Interface effects in ZnO metal-insulator-semiconductor and metal-semiconductor structures 2010,		1

28	ZnO-based MESFET Devices. Materials Research Society Symposia Proceedings, 2009, 1201, 30		1
27	Hafnium oxide thin films studied by time differential perturbed angular correlations. <i>Journal of Applied Physics</i> , 2011 , 109, 113918	2.5	1
26	Two-dimensional electron gases in MgZnO/ZnO heterostructures 2010 ,		1
25	X-ray diffraction measurements and depth profiling by secondary neutral mass spectrometry on epitaxially grown high-Tc superconducting thin films. <i>Mikrochimica Acta</i> , 1997 , 125, 211-217	5.8	1
24	Growth and Characterization of Optical and Electrical Properties of ZnO Nano- and Microwires. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		1
23	Phonon modes, dielectric constants, and exciton mass parameters in ternary MgxZn1NO. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 928, 1		1
22	Microstructure of Transition Metal Doped ZnO Films Investigated by AEM. <i>Microscopy and Microanalysis</i> , 2007 , 13, 386-387	0.5	1
21	Electron emission from arc-modified diamond-like carbon films at low electric field. <i>Applied Surface Science</i> , 2001 , 182, 142-149	6.7	1
20	Design and investigation of microwave bandpass filters for L- and R-frequency bands based on high-temperature superconducting films		1
19	Adjusting chemical bonding of hard amorphous CSixNy thin films by N*-plasma-assisted pulsed laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, S899-S903	2.6	1
18	Thermally Activated Depinning of a Driven Flux Line Lattice. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 215, 573-578	1.3	1
17	Experimental evidence of wide bandgap in triclinic (001)-oriented Sn5O2(PO4)2 thin films on Y2O3 buffered glass substrates. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14203-14207	7.1	1
16	Fundamental absorption edges in heteroepitaxial YBiO3 thin films. <i>Journal of Applied Physics</i> , 2016 , 120, 125702	2.5	1
15	Epitaxial Growth of E(AlxGa1日)2O3 Layers and Superlattice Heterostructures up to x = 0.48 on Highly Conductive Al-Doped ZnO Thin-Film Templates by Pulsed Laser Deposition. <i>Physica Status Solidi (B): Basic Research</i> , 2021 , 258, 2000359	1.3	1
14	Plastic strain relaxation and alloy instability in epitaxial corundum-phase (Al,Ga)2O3 thin films on r-plane Al2O3. <i>Materials Advances</i> , 2021 , 2, 4316-4322	3.3	1
13	Strain states and relaxation for (alpha)-(Al(_x)Ga(_{1-x}))(_2)O(_3) thin films on prismatic planes of (alpha)-Al(_2)O(_3) in the full composition range: Fundamental difference of a- and m-epitaxial planes in the manifestation of shear strain and lattice tilt. <i>Journal of Materials Research</i> ,1	2.5	1
12	Whispering Gallery Modes in Hexagonal Zinc Oxide Micro- and Nanocrystals 2005, 83-98		1
11	Martensitic phase transition and subsequent surface corrugation in manganese stabilized zirconia thin films. <i>Philosophical Magazine</i> , 2013 , 93, 2329-2339	1.6	

LIST OF PUBLICATIONS

~ 0	Interface-charge-coupled polarization response model of Pt-BaTiO3-ZnO-Pt heterojunctions:
10	Physical parameters variation. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1074, 1

9	Magnetic and transport properties of Cu1.05Cr0.89 Mg0.05O2 and Cu0.96Cr0.95 Mg0.05Mn0.04O2 films. <i>Thin Solid Films</i> , 2008 , 516, 8543-8546	2.2
8	Structure and optical properties of ZnO nanowires fabricated by pulsed laser deposition on GaN/Si(111) films with the use of Au and NiO catalysts. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2008 , 72, 1129-1131	0.4
7	Valence Band Structure of ZnO and MgxZn1⊠O. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1035, 1	
6	Distance between vortices in a thin YBa2Cu3O7 film in parallel magnetic field. <i>Physica B: Condensed Matter</i> , 2004 , 350, E331-E334	2.8
5	Ion beam analysis of Zn2🛘xCuxInxS2 films. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 190, 667-672	1.2
4	Excimer Laser Induced Deposition of BiSrCaCuO HTSC Thin Films and Buffer Layers - Depth Profiling by SNMS. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 285, 275	
3	Bestimmung der Dicke und der Zusammensetzung von TiNx- und TiCy-Schichten mittels niederenergetischer Ionenstrahlen. <i>Isotopes in Environmental and Health Studies</i> , 1990 , 26, 485-488	

- Depth profiling of HTSC thin films by secondary neutral mass spectrometry **1994**, 545-548
- Epitaxial lift-off of single crystalline CuI thin films. *Journal of Materials Chemistry C*, **2022**, 10, 4124-4127_{7.1}