Yang Kuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8509524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters. SIAM Journal on Mathematical Analysis, 2002, 33, 1144-1165.	1.9	494
2	Global qualitative analysis of a ratio-dependent predator-prey system. Journal of Mathematical Biology, 1998, 36, 389-406.	1.9	476
3	Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system. Journal of Mathematical Biology, 2001, 42, 489-506.	1.9	308
4	Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Applied Numerical Mathematics, 2006, 56, 559-573.	2.1	299
5	Uniqueness of limit cycles in Gause-type models of predator-prey systems. Mathematical Biosciences, 1988, 88, 67-84.	1.9	279
6	A stage structured predator-prey model and its dependence on maturation delay and death rate. Journal of Mathematical Biology, 2004, 49, 188-200.	1.9	265
7	Global analyses in some delayed ratio-dependent predator-prey systems. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32, 381-408.	1.1	212
8	Stoichiometry in Producer–Grazer Systems: Linking Energy Flow with Element Cycling. Bulletin of Mathematical Biology, 2000, 62, 1137-1162.	1.9	206
9	Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. Journal of Theoretical Biology, 2006, 242, 722-735.	1.7	177
10	Dynamics of a nonautonomous predator–prey system with the Beddington–DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2004, 295, 15-39.	1.0	165
11	Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system. Mathematical and Computer Modelling, 2002, 35, 951-961.	2.0	164
12	Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems. Journal of Mathematical Analysis and Applications, 2001, 255, 260-280.	1.0	159
13	Predator-prey dynamics in models of prey dispersal in two-patch environments. Mathematical Biosciences, 1994, 120, 77-98.	1.9	156
14	Modeling and analysis of a marine bacteriophage infection. Mathematical Biosciences, 1998, 149, 57-76.	1.9	151
15	Dynamics of a delay differential equation model of hepatitis B virus infection. Journal of Biological Dynamics, 2008, 2, 140-153.	1.7	149
16	A ratio-dependent food chain model and its applications to biological control. Mathematical Biosciences, 2003, 181, 55-83.	1.9	137
17	Growth and neutral lipid synthesis in green microalgae: A mathematical model. Bioresource Technology, 2011, 102, 111-117.	9.6	129
18	Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 2018, 22, 62-70.	3.0	129

Yang Kuang

#	Article	IF	CITATIONS
19	Optimal harvesting policy for single population with periodic coefficients. Mathematical Biosciences, 1998, 152, 165-178.	1.9	119
20	Wavefronts and global stability in a time-delayed population model with stage structure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 1563-1579.	2.1	118
21	Competition and stoichiometry: coexistence of two predators on one prey. Theoretical Population Biology, 2004, 65, 1-15.	1.1	118
22	Convergence Results in a Well-Known Delayed Predator-Prey System. Journal of Mathematical Analysis and Applications, 1996, 204, 840-853.	1.0	116
23	Mathematical Analysis of a Basic Virus Infection Model With Application to HBV Infection. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.4	110
24	Rich dynamics of a ratio-dependent one-prey two-predators model. Journal of Mathematical Biology, 2001, 43, 377-396.	1.9	105
25	Existence of periodic solutions in predator–prey and competition dynamic systems. Nonlinear Analysis: Real World Applications, 2006, 7, 1193-1204.	1.7	101
26	Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Analysis: Real World Applications, 2001, 2, 35-74.	1.7	92
27	Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems. Nonlinear Analysis: Theory, Methods & Applications, 1997, 28, 1373-1394.	1.1	89
28	Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. Journal of Mathematical Biology, 2010, 60, 573-590.	1.9	80
29	Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses. Journal of Mathematical Analysis and Applications, 2003, 278, 443-471.	1.0	75
30	Dynamics of a non-autonomous ratio-dependent predator—prey system. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2003, 133, 97-118.	1.2	74
31	A Delay Reaction-Diffusion Model of the Spread of Bacteriophage Infection. SIAM Journal on Applied Mathematics, 2004, 65, 550-566.	1.8	74
32	A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy. AIP Advances, 2012, 2, .	1.3	72
33	Analysis of a Model of the Glucoseâ€Insulin Regulatory System with Two Delays. SIAM Journal on Applied Mathematics, 2007, 67, 757-776.	1.8	69
34	Analysis of a Delayed Two-Stage Population Model with Space-Limited Recruitment. SIAM Journal on Applied Mathematics, 1995, 55, 1675-1696.	1.8	68
35	The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences and Engineering, 2009, 6, 283-299.	1.9	67
36	Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete and Continuous Dynamical Systems - Series B, 2001, 1, 103-124.	0.9	64

#	Article	IF	CITATIONS
37	Tumor-Immune Interaction, Surgical Treatment, and Cancer Recurrence in a Mathematical Model of Melanoma. PLoS Computational Biology, 2009, 5, e1000362.	3.2	64
38	ls West Africa Approaching a Catastrophic Phase or is the 2014 Ebola Epidemic Slowing Down? Different Models Yield Different Answers for Liberia. PLOS Currents, 2014, 6, .	1.4	62
39	Deterministic extinction effect of parasites on host populations. Journal of Mathematical Biology, 2003, 46, 17-30.	1.9	60
40	Simple Food Chain in a Chemostat with Distinct Removal Rates. Journal of Mathematical Analysis and Applications, 2000, 242, 75-92.	1.0	54
41	Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters. Journal of Differential Equations, 2019, 266, 7073-7100.	2.2	54
42	Mathematical modeling and qualitative analysis of insulin therapies. Mathematical Biosciences, 2007, 210, 17-33.	1.9	53
43	Boundedness of solutions of a nonlinear nonautonomous neutral delay equation. Journal of Mathematical Analysis and Applications, 1991, 156, 293-304.	1.0	51
44	Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints. Ecological Modelling, 2012, 245, 3-11.	2.5	49
45	The dynamics of temperature and light on the growth of phytoplankton. Journal of Theoretical Biology, 2015, 385, 8-19.	1.7	48
46	Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional-differential systems. Tohoku Mathematical Journal, 1997, 49, .	0.2	47
47	Permanence in Kolmogorov-Type Systems of Nonautonomous Functional Differential Equations. Journal of Mathematical Analysis and Applications, 1996, 197, 427-447.	1.0	46
48	Global Asymptotic Behavior of a Chemostat Model with Two Perfectly Complementary Resources and Distributed Delay. SIAM Journal on Applied Mathematics, 2000, 60, 2058-2086.	1.8	46
49	Dynamics of Stoichiometric Bacteria-Algae Interactions in the Epilimnion. SIAM Journal on Applied Mathematics, 2007, 68, 503-522.	1.8	46
50	Dynamics of a mechanistically derived stoichiometric producer-grazer model. Journal of Biological Dynamics, 2008, 2, 286-296.	1.7	46
51	Mechanisms of Resistance to Intermittent Androgen Deprivation in Patients with Prostate Cancer Identified by a Novel Computational Method. Cancer Research, 2014, 74, 3673-3683.	0.9	46
52	The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model. Biology Direct, 2010, 5, 24.	4.6	45
53	Periodic solutions in periodic state-dependent delay equations and population models. Proceedings of the American Mathematical Society, 2001, 130, 1345-1353.	0.8	43
54	Heteroclinic Bifurcation in the Michaelis–Menten-Type Ratio-Dependent Predator-Prey System. SIAM Journal on Applied Mathematics, 2007, 67, 1453-1464.	1.8	43

#	Article	IF	CITATIONS
55	Limit Cycles in a Chemostat-Related Model. SIAM Journal on Applied Mathematics, 1989, 49, 1759-1767.	1.8	42
56	Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - Series B, 2008, 10, 857-871.	0.9	41
57	Global stability in a nonlinear difference-delay equation model of flour beetle population growth. Journal of Difference Equations and Applications, 1996, 2, 31-37.	1.1	37
58	Cats protecting birds revisited. Bulletin of Mathematical Biology, 2005, 67, 1081-1106.	1.9	37
59	Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1, 215-222.	1.9	37
60	Dynamics of a plant–herbivore model. Journal of Biological Dynamics, 2008, 2, 89-101.	1.7	36
61	On neutral delay logistic gause-type predator-prey systems. Dynamical Systems, 1991, 6, 173-189.	0.7	35
62	Dynamics of a Producer–Grazer Model Incorporating the Effects of Excess Food Nutrient Content on Grazer's Growth. Bulletin of Mathematical Biology, 2014, 76, 2175-2197.	1.9	35
63	Nonuniqueness of limit cycles of gause-type predator-prey systems. Applicable Analysis, 1988, 29, 269-287.	1.3	34
64	Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors. Biology Direct, 2011, 6, 64.	4.6	34
65	Biodiversity, Habitat Area, Resource Growth Rate and Interference Competition. Bulletin of Mathematical Biology, 2003, 65, 497-518.	1.9	33
66	Biological Stoichiometry: An Ecological Perspective on Tumor Dynamics. BioScience, 2003, 53, 1112.	4.9	33
67	Enhanced modelling of the glucose–insulin system and its applications in insulin therapies. Journal of Biological Dynamics, 2009, 3, 22-38.	1.7	33
68	Global analysis of a stoichiometric producer–grazer model with Holling type functional responses. Journal of Mathematical Biology, 2011, 63, 901-932.	1.9	31
69	Mathematically modeling the biological properties of gliomas: A review. Mathematical Biosciences and Engineering, 2015, 12, 879-905.	1.9	31
70	Global stability of endemic equilibrium point of basic virus infection model with application to HBV infection. Journal of Systems Science and Complexity, 2010, 23, 1221-1230.	2.8	30
71	A viral load-based cellular automata approach to modeling HIV dynamics and drug treatment. Journal of Theoretical Biology, 2008, 253, 24-35.	1.7	29
72	Dynamics of a three-species food chain model with fear effect. Communications in Nonlinear Science and Numerical Simulation, 2021, 99, 105809.	3.3	29

#	Article	IF	CITATIONS
73	A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics. Mathematical Biosciences, 2013, 244, 107-115.	1.9	28
74	Systemically modeling the dynamics of plasma insulin in subcutaneous injection of insulin analogues for type 1 diabetes. Mathematical Biosciences and Engineering, 2009, 6, 41-58.	1.9	27
75	Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology. Japan Journal of Industrial and Applied Mathematics, 1992, 9, 205-238.	0.9	26
76	Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy. Applied Sciences (Switzerland), 2016, 6, 352.	2.5	26
77	Review: Mathematical Modeling of Prostate Cancer and Clinical Application. Applied Sciences (Switzerland), 2020, 10, 2721.	2.5	26
78	The roles of predator maturation delay and functional response in determining the periodicity of predator–prey cycles. Mathematical Biosciences, 2009, 221, 1-10.	1.9	25
79	Mathematical Insights in Evaluating State Dependent Effectiveness of HIV Prevention Interventions. Bulletin of Mathematical Biology, 2013, 75, 649-675.	1.9	25
80	Qualitative Analysis of One- or Two-Species Neutral Delay Population Models. SIAM Journal on Mathematical Analysis, 1992, 23, 181-200.	1.9	24
81	Rabbits killing birds revisited. Mathematical Biosciences, 2006, 203, 100-123.	1.9	24
82	A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12, 1157-1172.	1.9	24
83	Monotonic and Oscillatory Solutions of a Linear Neutral Delay Equation with Infinite Lag. SIAM Journal on Mathematical Analysis, 1990, 21, 1633-1641.	1.9	23
84	Strictly Nonautonomous Cooperative System with a First Integral. SIAM Journal on Mathematical Analysis, 1993, 24, 1331-1339.	1.9	23
85	Global Analysis for an HIV Infection Model with CTL Immune Response and Infected Cells in Eclipse Phase. Applied Sciences (Switzerland), 2017, 7, 861.	2.5	23
86	Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy. Mathematical Biosciences and Engineering, 2019, 16, 3512-3536.	1.9	23
87	Global stability of infectionâ€free state and endemic infection state of a modified human immunodeficiency virus infection model. IET Systems Biology, 2015, 9, 95-103.	1.5	21
88	Tumour-Immune Dynamics with an Immune Checkpoint Inhibitor. Letters in Biomathematics, 2018, 5, .	0.1	21
89	Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1001-1021.	0.9	21
90	Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences and Engineering, 2010, 7, 171-185.	1.9	21

#	Article	IF	CITATIONS
91	Global dynamics in a stoichiometric food chain model with two limiting nutrients. Mathematical Biosciences, 2017, 289, 9-19.	1.9	20
92	Host Extinction Dynamics in a Simple Parasite-Host Interaction Model. Mathematical Biosciences and Engineering, 2005, 2, 743-751.	1.9	20
93	Modeling and analysis of stoichiometric two-patch consumer–resource systems. Mathematical Biosciences, 2004, 189, 153-184.	1.9	19
94	Dynamics for a non-autonomous predator-prey system with generalist predator. Journal of Mathematical Analysis and Applications, 2020, 485, 123820.	1.0	19
95	Stability and bifurcation of a stage-structured predator–prey model with both discrete and distributed delays. Chaos, Solitons and Fractals, 2013, 46, 19-27.	5.1	18
96	Quiescence as an explanation of Gompertzian tumor growth revisited. Mathematical Biosciences, 2014, 254, 76-82.	1.9	18
97	Dynamics of a neutral delay equation for an insect population with long larval and short adult phases. Journal of Differential Equations, 2009, 246, 4653-4669.	2.2	17
98	Mathematical models of the interrelated dynamics of hepatitis D and B. Mathematical Biosciences, 2014, 247, 38-46.	1.9	17
99	Qualitative analysis of a nonautonomous nonlinear delay differential equation. Tohoku Mathematical Journal, 1991, 43, 509.	0.2	16
100	Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1993, 34, 471-494.	0.2	16
101	Sharp conditions for oscillations in some nonlinear nonautonomous delay differential equations. Nonlinear Analysis: Theory, Methods & Applications, 1997, 29, 1265-1276.	1.1	16
102	Study on a non-autonomous predator–prey system with Beddington–DeAngelis functional response. Mathematical and Computer Modelling, 2008, 48, 1755-1764.	2.0	16
103	Traveling Waves of a Go-or-Grow Model of Glioma Growth. SIAM Journal on Applied Mathematics, 2018, 78, 1778-1801.	1.8	16
104	Two-Species Competition with High Dispersal: The Winning Strategy. Mathematical Biosciences and Engineering, 2005, 2, 345-362.	1.9	16
105	Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval. Chaos, 2017, 27, 114324.	2.5	15
106	Dynamics of a stoichiometric discrete producer-grazer model. Journal of Difference Equations and Applications, 2005, 11, 347-364.	1.1	14
107	Modeling Refuge Effect of Submerged Macrophytes in Lake System. Bulletin of Mathematical Biology, 2016, 78, 662-694.	1.9	14
108	Impact of disposing stray dogs on risk assessment and control of Echinococcosis in Inner Mongolia. Mathematical Biosciences, 2018, 299, 85-96.	1.9	13

#	Article	IF	CITATIONS
109	Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 481-493.	0.9	13
110	Explicit Separation of Growth andÂMotility inÂaÂNew Tumor Cord Model. Bulletin of Mathematical Biology, 2009, 71, 585-601.	1.9	12
111	Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1663-1684.	0.9	12
112	Dynamic modeling and optimal control of cystic echinococcosis. Infectious Diseases of Poverty, 2021, 10, 38.	3.7	12
113	Stoichiometric Ecotoxicology for a Multisubstance World. BioScience, 2021, 71, 132-147.	4.9	12
114	Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete and Continuous Dynamical Systems - Series B, 2003, 4, 221-240.	0.9	12
115	Effect of seasonal changing temperature on the growth of phytoplankton. Mathematical Biosciences and Engineering, 2017, 14, 1091-1117.	1.9	12
116	Dynamics and implications of models for intermittent androgen suppression therapy. Mathematical Biosciences and Engineering, 2019, 16, 187-204.	1.9	12
117	Convergence in Lotka–Volterra-type delay systems without instantaneous feedbacks. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1993, 123, 45-58.	1.2	11
118	The Impact of Intermittent Androgen Suppression Therapy in Prostate Cancer Modeling. Applied Sciences (Switzerland), 2019, 9, 36.	2.5	11
119	Stability and Bifurcation in a Stoichiometric Producer-Grazer Model with Knife Edge. SIAM Journal on Applied Dynamical Systems, 2016, 15, 2051-2077.	1.6	10
120	Dynamics of acute hepatitis B virus infection in chimpanzees. Mathematics and Computers in Simulation, 2014, 96, 157-170.	4.4	9
121	On the location and period of limit cycles in Gause-type predator-prey systems. Journal of Mathematical Analysis and Applications, 1989, 142, 130-143.	1.0	8
122	A simple spatiotemporal rabies model for skunk and bat interaction in northeast Texas. Journal of Theoretical Biology, 2012, 314, 16-22.	1.7	8
123	Modeling the dynamics of epidemic spreading on homogenous and heterogeneous networks. Applicable Analysis, 2015, 94, 2308-2330.	1.3	8
124	Nonoccurrence of stability switching in systems of differential equations with distributed delays. Quarterly of Applied Mathematics, 1994, 52, 569-578.	0.7	7
125	Global stability and persistence in diffusive food chains. ANZIAM Journal, 2001, 43, 247-268.	0.2	7
126	DYNAMICS OF A DISCRETE STOICHIOMETRIC TWO PREDATORS ONE PREY MODEL. Journal of Biological Systems, 2010, 18, 649-667.	1.4	7

#	Article	IF	CITATIONS
127	Adaptive evolution of foraging-related trait in intraguild predation system. Mathematical Biosciences, 2016, 274, 1-11.	1.9	7
128	Analysis of tumor-immune dynamics in a delayed dendritic cell therapy model. Chaos, 2020, 30, 113108.	2.5	7
129	The dynamics of a stoichiometric plant-herbivore model and its discrete analog. Mathematical Biosciences and Engineering, 2007, 4, 29-46.	1.9	7
130	An epidemic model with post-contact prophylaxis of distributed length I. Thresholds for disease persistence and extinction. Journal of Biological Dynamics, 2008, 2, 221-239.	1.7	6
131	Necessary and Sufficient Conditions for Global Attractivity of Hopfield-Type Neural Networks with Time Delays. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.4	6
132	Modeling the synergistic properties of drugs in hormonal treatment for prostate cancer. Journal of Theoretical Biology, 2021, 514, 110570.	1.7	6
133	Data and implication based comparison of two chronic myeloid leukemia models. Mathematical Biosciences and Engineering, 2013, 10, 1501-1518.	1.9	6
134	NUMERICAL SOLUTION OF A MODEL FOR BRAIN CANCER PROGRESSION AFTER THERAPY. Mathematical Modelling and Analysis, 2009, 14, 43-56.	1.5	5
135	Can fractional differentiation improve stability results and data fitting ability of a prostate cancer model under intermittent androgen suppression therapy?. Chaos, Solitons and Fractals, 2020, 131, 109529.	5.1	5
136	Tumor Control, Elimination, and Escape through a Compartmental Model of Dendritic Cell Therapy for Melanoma. SIAM Journal on Applied Mathematics, 2020, 80, 906-928.	1.8	5
137	Fluctuation and extinction dynamics in host-microparasite systems. Communications on Pure and Applied Analysis, 2011, 10, 1537-1548.	0.8	5
138	Nutrient limitations as an explanation of Gompertzian tumor growth. Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 357-372.	0.9	5
139	Notes on the stability of dynamic economic systems. Applied Mathematics and Computation, 2000, 108, 85-89.	2.2	4
140	Simple multi-scale modeling of the transmission dynamics of the 1905 plague epidemic in Bombay. Mathematical Biosciences, 2018, 301, 83-92.	1.9	4
141	Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11, 841-875.	1.9	4
142	Finiteness of limit cycles in planar autonomous systems. Applicable Analysis, 1989, 32, 253-264.	1.3	3
143	Adaptive evolution of body size subject to indirect effect in trophic cascade system. BioSystems, 2017, 159, 23-35.	2.0	3
144	Stoichiometric Modeling of Aboveground–Belowground Interaction of Herbaceous Plant and Two Herbivores. Bulletin of Mathematical Biology, 2020, 82, 107.	1.9	3

#	Article	IF	CITATIONS
145	Mathematics + Cancer: An Undergraduate "Bridge" Course in Applied Mathematics. SIAM Review, 2020, 62, 244-263.	9.5	3
146	Global Dynamics and Implications of an HBV Model with Proliferating Infected Hepatocytes. Applied Sciences (Switzerland), 2021, 11, 8176.	2.5	3
147	Dynamics and growth rate implications of ribosomes and mRNAs interaction in E. coli. Heliyon, 2022, 8, e09820.	3.2	3
148	Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions. Bulletin of Mathematical Biology, 2016, 78, 2057-2090.	1.9	2
149	The Impact of Fractional Differentiation in Terms of Fitting for a Prostate Cancer Model Under Intermittent Androgen Suppression Therapy. Forum for Interdisciplinary Mathematics, 2020, , 151-197.	1.6	2
150	Novel dynamics of a simple Daphnia -microparasite model with dose-dependent infection. Discrete and Continuous Dynamical Systems - Series S, 2011, 4, 1599-1610.	1.1	2
151	Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4, 85-99.	1.9	2
152	A mathematical model of the dynamics for anti-HBV infection treatment with Peginterferon Alfa-2a. , 2008, , .		1
153	Assessing the Public Health Impact of HIV Interventions. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 66, e60-e62.	2.1	1
154	EFFECT OF TEMPERATURE ON ADAPTIVE EVOLUTION OF PHYTOPLANKTON CELL SIZE. Journal of Applied Analysis and Computation, 2020, 10, 2644-2658.	0.5	1
155	A SIMPLE SI MODEL WITH TWO AGE GROUPS AND ITS APPLICATION TO US HIV EPIDEMICS: TO TREAT OR NOT TO TREAT?. Journal of Biological Systems, 2007, 15, 169-184.	1.4	0
156	Preface for the Special Issue on Dynamical Models of Biology and Medicine. Applied Sciences (Switzerland), 2019, 9, 2380.	2.5	0
157	Editorial. Journal of Biological Dynamics, 2021, 15, S1-S2.	1.7	0
158	Stoichiometric producer-grazer models with varying nitrogen pools and ammonia toxicity. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, 1305-1320.	1.1	0
159	Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 3771-3782.	0.9	0
160	Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes. Bulletin of Mathematical Biology, 2022, 84, .	1.9	0