
Giulio Munz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Successful sulphide-driven partial denitrification: Efficiency, stability and resilience in SRT-controlled conditions. Chemosphere, 2022, 295, 133936.	4.2	17
2	Integrating online differential titrimetry and dynamic modelling as innovative energy saving strategy in a large industrial WWTP. Clean Technologies and Environmental Policy, 2022, 24, 1771-1780.	2.1	2
3	Tannery Wastewater Recalcitrant Compounds Foster the Selection of Fungi in Non-Sterile Conditions: A Pilot Scale Long-Term Test. International Journal of Environmental Research and Public Health, 2021, 18, 6348.	1.2	5
4	The role of cosubstrate and mixing on fungal biofilm efficiency in the removal of tannins. Environmental Technology (United Kingdom), 2020, 41, 3515-3523.	1.2	8
5	A novel universal primer pair for prokaryotes with improved performances for anammox containing communities. Scientific Reports, 2020, 10, 15648.	1.6	9
6	Role of bacterivorous organisms on fungal-based systems for natural tannin degradation. Heliyon, 2020, 6, e03604.	1.4	5
7	Aerobic granular sludge treating anaerobically pretreated brewery wastewater at different loading rates. Water Science and Technology, 2020, 82, 1523-1534.	1.2	4
8	Mycoremediation of Old and Intermediate Landfill Leachates with an Ascomycete Fungal Isolate, Lambertella sp Water (Switzerland), 2020, 12, 800.	1.2	9
9	Ammonia Oxidizing Bacteria (AOB) kinetic parameters estimated using the actual maximum ammonia oxidation rate. International Biodeterioration and Biodegradation, 2020, 147, 104876.	1.9	2
10	The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment. Scientific Reports, 2019, 9, 11356.	1.6	16
11	Wastewater-Agar as a selection environment: A first step towards a fungal in-situ bioaugmentation strategy. Ecotoxicology and Environmental Safety, 2019, 171, 443-450.	2.9	6
12	Influence of pH control on material characteristics, bacterial community composition and BNR performance of mature aerobic granules. Chemical Engineering Research and Design, 2019, 124, 158-166.	2.7	6
13	Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices. New Biotechnology, 2019, 50, 27-36.	2.4	35
14	Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of the Total Environment, 2018, 627, 835-843.	3.9	14
15	The role of organic load and ammonia inhibition in anaerobic digestion of tannery fleshing. Water Resources and Industry, 2018, 19, 25-34.	1.9	45
16	The microbial community in a moving bed biotrickling filter operated to remove hydrogen sulfide from gas streams. Systematic and Applied Microbiology, 2018, 41, 399-407.	1.2	8
17	Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview. Water Resources and Industry, 2017, 17, 43-52.	1.9	19
18	Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresource Technology, 2017, 226, 150-157.	4.8	78

GIULIO MUNZ

#	Article	IF	CITATIONS
19	Effect of cellulose as co-substrate on old landfill leachate treatment using white-rot fungi. Bioresource Technology, 2017, 241, 1067-1076.	4.8	39
20	Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta. Water (Switzerland), 2017, 9, 824.	1.2	23
21	Modeling the Disintegration Process in Anaerobic Digestion of Tannery Sludge and Fleshing. Frontiers in Environmental Science, 2017, 5, .	1.5	13
22	Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge. Water Science and Technology, 2016, 73, 60-68.	1.2	18
23	Summer holidays as break-point in shaping a tannery sludge microbial community around a stable core microbiota. Scientific Reports, 2016, 6, 30376.	1.6	9
24	Free nitrous acid inhibition of biological phosphorus removal in integrated fixed-film activated sludge (IFAS) system. Chemical Engineering Journal, 2016, 287, 38-46.	6.6	23
25	Biological Sulfur-Oxidizing Potential of Primary and Biological Sludge in a Tannery Wastewater Treatment Plant. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	6
26	Evaporation–condensation of olive mill wastewater: Evaluation of condensate treatability through SBR and constructed Wetlands. Ecological Engineering, 2015, 80, 156-161.	1.6	21
27	Modeling bioaugmentation with nitrifiers in membrane bioreactors. Water Science and Technology, 2015, 71, 15-21.	1.2	8
28	Nitrite and nitrate as electron acceptors for biological sulphide oxidation. Water Science and Technology, 2015, 72, 593-599.	1.2	4
29	Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor. Environmental Technology (United Kingdom), 2015, 36, 3159-3166.	1.2	8
30	Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria. Environmental Technology (United Kingdom), 2015, 36, 538-545.	1.2	12
31	Applicability of the Arrhenius model for ammonia oxidizing bacteria subjected to temperature time gradients. Frontiers of Environmental Science and Engineering, 2015, 9, 988-994.	3.3	8
32	Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 2014, 109, 20-27.	4.2	38
33	FACTORS AFFECTING BIOLOGICAL SULPHATE REDUCTION IN TANNERY WASTEWATER TREATMENT. Environmental Engineering and Management Journal, 2014, 13, 1005-1012.	0.2	14
34	Characterization and Comparison of Bacterial Communities Selected in Conventional Activated Sludge and Membrane Bioreactor Pilot Plants: A Focus on Nitrospira and Planctomycetes Bacterial Phyla. Current Microbiology, 2013, 67, 77-90.	1.0	43
35	Effect of ammonia oxidizing bacteria (AOB) kinetics on bioaugmentation. Bioresource Technology, 2012, 125, 88-96.	4.8	19
36	Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal. Chemosphere, 2012, 88, 712-717.	4.2	27

GIULIO MUNZ

#	Article	IF	CITATIONS
37	Modeling the decay of ammonium oxidizing bacteria. Water Research, 2011, 45, 557-564.	5.3	31
38	Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 2011, 83, 720-725.	4.2	59
39	Anaerobic treatment of vegetable tannery wastewaters: A review. Desalination, 2010, 264, 1-8.	4.0	77
	Kinetic parameters and inhibition response of ammonia―and nitriteâ€ovidizing bacteria in membrane		

Kinetic parameters and inhibition response of ammonia―and nitriteâ€oxidizing bacteria in membrane bioreactors and conventional activated sludge processes. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Overlock 1@3f 50 617 40

41	The role of tannins in conventional and membrane treatment of tannery wastewater. Journal of Hazardous Materials, 2009, 164, 733-739.	6.5	69
42	Monitoring biological sulphide oxidation processes using combined respirometric and titrimetric techniques. Chemosphere, 2009, 76, 644-650.	4.2	21
43	A modified Activated Sludge Model to estimate solids production at low and high solids retention time. Water Research, 2009, 43, 4539-4548.	5.3	56
44	Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional) Tj ETQq0 0 8559-8564.	0 rgBT /C 4.8	verlock 10 ⁻ 68
45	Characterization of tannery wastewater and biomass in a membrane bioreactor using respirometric analysis. Bioresource Technology, 2008, 99, 8612-8618.	4.8	68
46	Sulphide oxidation to elemental sulphur in a membrane bioreactor: Performance and characterization of the selected microbial sulphur-oxidizing community. Systematic and Applied Microbiology, 2008, 31, 461-473.	1.2	44
47	Powdered activated carbon and membrane bioreactors (MBRPAC) for tannery wastewater treatment: long term effect on biological and filtration process performances. Desalination, 2007, 207, 349-360.	4.0	85
48	Moving Bed BioTrickling Filters: an innovative solution for hydrogen sulphide removal from gas streams. , 0, 61, 215-221.		1