

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508961/publications.pdf Version: 2024-02-01

VINC SU

#	Article	IF	CITATIONS
1	Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. Journal of Cleaner Production, 2018, 205, 536-551.	9.3	182
2	Eco-friendly treatment of low-calcium coal fly ash for high pozzolanic reactivity: A step towards waste utilization in sustainable building material. Journal of Cleaner Production, 2019, 238, 117962.	9.3	170
3	Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cement and Concrete Composites, 2019, 97, 387-398.	10.7	125
4	Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash. Fuel Processing Technology, 2018, 181, 75-90.	7.2	120
5	Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. Journal of Cleaner Production, 2020, 250, 119455.	9.3	112
6	Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement. Journal of Cleaner Production, 2020, 250, 119528.	9.3	107
7	Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste. Cement and Concrete Composites, 2019, 97, 54-67.	10.7	91
8	Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum. Journal of Cleaner Production, 2018, 195, 396-405.	9.3	89
9	Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar. Construction and Building Materials, 2021, 266, 120894.	7.2	77
10	New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 2020, 242, 118347.	9.3	67
11	Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Construction and Building Materials, 2022, 330, 127218.	7.2	67
12	Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Construction and Building Materials, 2021, 267, 120465.	7.2	66
13	Effect of calcium sulphoaluminate cement on mechanical strength and waterproof properties of beta-hemihydrate phosphogypsum. Construction and Building Materials, 2020, 242, 118198.	7.2	66
14	Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials. Construction and Building Materials, 2019, 206, 248-260.	7.2	62
15	Effect of wet-grinding steel slag on the properties of Portland cement: An activated method and rheology analysis. Construction and Building Materials, 2021, 286, 122823.	7.2	61
16	Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry. Construction and Building Materials, 2021, 308, 125057.	7.2	60
17	Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Construction and Building Materials, 2018, 167, 96-105.	7.2	59
18	Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS. Construction and Building Materials, 2019, 225, 1170-1182.	7.2	57

Ying Su

#	Article	IF	CITATIONS
19	Utilization of hemihydrate phosphogypsum for the preparation of porous sound absorbing material. Construction and Building Materials, 2020, 234, 117346.	7.2	53
20	An accelerator prepared from waste concrete recycled powder and its effect on hydration of cement-based materials. Construction and Building Materials, 2021, 296, 123767.	7.2	51
21	Efficiency of wet-grinding on the mechano-chemical activation of granulated blast furnace slag (GBFS). Construction and Building Materials, 2019, 199, 185-193.	7.2	45
22	Preparation of α-hemihydrate gypsum from phosphogypsum in recycling CaCl2 solution. Construction and Building Materials, 2019, 214, 399-412.	7.2	42
23	Shear Strength of Stabilized Clay Treated with Soda Residue and Ground Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	38
24	The effect of ultrahigh volume ultrafine blast furnace slag on the properties of cement pastes. Construction and Building Materials, 2018, 189, 438-447.	7.2	37
25	Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 625-633.	1.0	34
26	Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Construction and Building Materials, 2021, 289, 123157.	7.2	33
27	Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. Journal of Cleaner Production, 2021, 283, 124632.	9.3	29
28	Preparation of eco-friendly lightweight gypsum: Use of beta-hemihydrate phosphogypsum and expanded polystyrene particles. Construction and Building Materials, 2021, 297, 123837.	7.2	27
29	Effects of wet-grinded superfine waste glass on the fresh properties and reaction characteristic of cement pastes. Construction and Building Materials, 2020, 247, 118593.	7.2	22
30	Polycarboxylate superplasticizer modified by phosphate ester in side chain and its basic properties in gypsum plaster. Construction and Building Materials, 2021, 271, 121566.	7.2	22
31	Effect of organic alkali on compressive strength and hydration of wet-grinded granulated blast-furnace slag containing Portland cement. Construction and Building Materials, 2019, 206, 10-18.	7.2	21
32	Preparation of ultrafine fly ash by wet grinding and its utilization for immobilizing chloride ions in cement paste. Waste Management, 2020, 113, 456-468.	7.4	21
33	Wet-milling disposal of autoclaved aerated concrete demolition waste – A comparison with classical supplementary cementitious materials. Advanced Powder Technology, 2020, 31, 3736-3746.	4.1	20
34	Enhancement of compressive strength of high-volume fly ash cement paste by wet grinded cement: Towards low carbon cementitious materials. Construction and Building Materials, 2022, 323, 126458.	7.2	18
35	Shrinkage properties and microstructure of high volume ultrafine phosphorous slag blended cement mortars with superabsorbent polymer. Journal of Building Engineering, 2020, 29, 101121.	3.4	17
36	Nano-carbide slag seed as a new type accelerator for Portland cement. Materials Letters, 2020, 278, 128464.	2.6	16

Ying Su

#	Article	IF	CITATIONS
37	Mechanical performance, hydration characteristics and microstructures of high volume blast furnace ferronickel slag cement mortar by wet grinding activation. Construction and Building Materials, 2022, 320, 126148.	7.2	16
38	Potential usage of porous autoclaved aerated concrete waste as eco-friendly internal curing agent for shrinkage compensation. Journal of Cleaner Production, 2021, 320, 128894.	9.3	15
39	Microemulsion Synthesis of Nanosized Calcium Sulfate Hemihydrate and Its Morphology Control by Different Surfactants. ACS Omega, 2019, 4, 9552-9556.	3.5	14
40	Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 2021, 306, 124840.	7.2	14
41	Nano C-S-H seeds prepared from ground granulated blast-furnace slag-carbide slag and its application in Portland cement. Construction and Building Materials, 2022, 329, 127204.	7.2	13
42	Heat-cured cement-based composites with wet-grinded fly ash and carbide slag slurry: Hydration, compressive strength and carbonation. Construction and Building Materials, 2021, 307, 124916.	7.2	12
43	Enhanced microwave absorption properties of nickel-coated carbon fiber/glass fiber hybrid epoxy composites-towards an industrial reality. Materials Research Express, 2019, 6, 126324.	1.6	9
44	Low-Energy Consumption Preparation of Fine Waterproof Cementitious Material with High-Volume Phosphogypsum. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	9
45	Preparation of nano cement particles by wet-grinding and its effect on hydration of cementitious system. Construction and Building Materials, 2021, 307, 125051.	7.2	9
46	Nano-treatment of Autoclaved Aerated Concrete Waste and Its Usage in Cleaner Building Materials. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 786-793.	1.0	8
47	Effect of tricalcium aluminate and nano silica on performance of hemihydrate gypsum. Construction and Building Materials, 2022, 321, 126362.	7.2	8
48	A comparative study on concrete slurry waste: performance optimization from the wet-milling process. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	7
49	Effect of silica fume on the thaumasite form of sulfate attack on cement-based materials. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1108-1114.	1.0	6
50	Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 392-399.	1.0	6
51	One-step synthesis of nanoscale anhydrous calcium sulfate whiskers: direct conversion of calcium carbonate by mixed acid with microemulsion method. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	6
52	One-pot synthesis of polydopamine/Ag microspheres through microemulsion environment and its methylene blue removal application. Journal of Polymer Research, 2022, 29, 1.	2.4	6
53	Use of different barium salts to inhibit the thaumasite form of sulfate attack in cement-based materials. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 361-366.	1.0	5
54	Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 81-92.	1.6	5

Ying Su

#	Article	IF	CITATIONS
55	Microemulsion synthesis of anhydrous calcium sulfate nanowhiskers with calcium acetate solution and its surface structure stable and crystal phase evolution after modification. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	5
56	Micro-environment regulation synthesis of calcium sulfate nanoparticles and its water removal application. Materials Research Express, 2019, 6, 1050b8.	1.6	4
57	Influence of annealing on the structure of silica glass. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 902-906.	1.0	3
58	Stress-Strain Relationship and Seismic Performance of Cast-in-Situ Phosphogypsum. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 62-68.	1.6	3
59	Light-weight carbon fiber/silver-coated hollow glass spheres/epoxy composites as highly effective electromagnetic interference shielding material. Journal of Reinforced Plastics and Composites, 2022, 41, 497-508.	3.1	3
60	Properties of β-HPG pastes in the presence of α-HPG prepared from phosphogypsum. Construction and Building Materials, 2022, 334, 127414.	7.2	3
61	Fluid Permeability of Ground Steel Slag-Blended Composites Evaluated by Pore Structure. Advances in Materials Science and Engineering, 2020, 2020, 1-14.	1.8	Ο
62	Compressive strength and permeability of steam-cured mortar incorporating high volume fly ash with different activation degrees by wet milling. Journal of Building Engineering, 2022, 56, 104767.	3.4	0