

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508880/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear inclusion theory with application to the growth and morphogenesis of a confined body. Journal of the Mechanics and Physics of Solids, 2022, 159, 104709.	2.3	6
2	Bacterial Surface Detachment during Nebulization with Contaminated Reusable Home Nebulizers. Microbiology Spectrum, 2022, 10, e0253521.	1.2	4
3	Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. ELife, 2022, 11, .	2.8	9
4	Mechanical Resilience of Biofilms toward Environmental Perturbations Mediated by Extracellular Matrix. Advanced Functional Materials, 2022, 32, .	7.8	8
5	Social evolution of shared biofilm matrix components. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
6	Electrospun Nanofibers for New Generation Flexible Energy Storage. Energy and Environmental Materials, 2021, 4, 502-521.	7.3	57
7	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	0.8	46
8	CO ₂ -Driven diffusiophoresis for maintaining a bacteria-free surface. Soft Matter, 2021, 17, 2568-2576.	1.2	15
9	Active phase separation by turning towards regions of higher density. Nature Physics, 2021, 17, 961-967.	6.5	61
10	Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Frontiers in Microbiology, 2021, 12, 686793.	1.5	24
11	Morphogenesis and cell ordering in confined bacterial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
12	Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nature Communications, 2021, 12, 6632.	5.8	41
13	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7622-7632.	3.3	82
14	Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host and Microbe, 2019, 26, 15-21.	5.1	380
15	Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife, 2019, 8, .	2.8	67
16	Surfactant-Mediated Assembly of Amphiphilic Janus Spheres. Langmuir, 2019, 35, 6106-6111.	1.6	21
17	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. Advanced Materials, 2018, 30, e1804153.	11.1	62
18	Verticalization of bacterial biofilms. Nature Physics, 2018, 14, 954-960.	6.5	92

Jing Yan

#	Article	IF	CITATIONS
19	Environmental fluctuation governs selection for plasticity in biofilm production. ISME Journal, 2017, 11, 1569-1577.	4.4	45
20	Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 2017, 8, 327.	5.8	119
21	Effective temperature concept evaluated in an active colloid mixture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7513-7518.	3.3	70
22	Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. ELife, 2017, 6, .	2.8	65
23	Reconfiguring active particles by electrostaticÂimbalance. Nature Materials, 2016, 15, 1095-1099.	13.3	414
24	Directed Selfâ€Assembly Pathways of Active Colloidal Clusters. Angewandte Chemie - International Edition, 2016, 55, 5166-5169.	7.2	87
25	A Scalable Platform for Functional Nanomaterials via Bubbleâ€Bursting. Advanced Materials, 2016, 28, 4047-4052.	11.1	19
26	Directed Selfâ€Assembly Pathways of Active Colloidal Clusters. Angewandte Chemie, 2016, 128, 5252-5255.	1.6	13
27	<i>Vibrio cholerae</i> biofilm growth program and architecture revealed by single-cell live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5337-43.	3.3	159
28	Orientationally Glassy Crystals of Janus Spheres. Physical Review Letters, 2014, 112, .	2.9	50
29	Colloidal ribbons and rings from Janus magnetic rods. Nature Communications, 2013, 4, 1516.	5.8	140
30	Linking synchronization to self-assembly using magnetic Janus colloids. Nature, 2012, 491, 578-581.	13.7	339
31	Effects of ZnO–xV2O5 substitution on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics. Journal of Electroceramics, 2008, 21, 116-119.	0.8	6
32	Low-temperature sintering and microwave dielectric properties of ZnTiO3-based LTCC materials. Journal of Electroceramics, 2008, 21, 141-144.	0.8	13