
Deepthy Menon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate Polymers, 2010, 82, 227-232.	10.2	1,085
2	Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 2009, 20, 235-241.	3.6	431
3	Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 2011, 84, 1158-1164.	10.2	417
4	Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale, 2011, 3, 2461.	5.6	403
5	Hemocompatibility and Macrophage Response of Pristine and Functionalized Graphene. Small, 2012, 8, 1251-1263.	10.0	314
6	Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology, 2010, 21, 055103.	2.6	291
7	Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers, 2009, 77, 863-869.	10.2	255
8	Biocompatible Magnetite/Gold Nanohybrid Contrast Agents via Green Chemistry for MRI and CT Bioimaging. ACS Applied Materials & Interfaces, 2012, 4, 251-260.	8.0	221
9	Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials, 2010, 31, 714-729.	11.4	176
10	Green Synthesis of Anisotropic Gold Nanoparticles for Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2014, 6, 8080-8089.	8.0	164
11	Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology, 2009, 20, 065102.	2.6	145
12	A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials, 2010, 31, 2606-2616.	11.4	121
13	Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale, 2011, 3, 3657.	5.6	118
14	PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 325-340.	3.5	108
15	Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bulletin of Materials Science, 2008, 31, 343-351.	1.7	94
16	Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydrate Polymers, 2013, 93, 661-669.	10.2	92
17	Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomaterialia, 2014, 10, 2112-2124.	8.3	92
18	The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology, 2009, 20, 195101.	2.6	91

#	Article	IF	CITATIONS
19	Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Acta Biomaterialia, 2018, 78, 36-47.	8.3	85
20	Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1399-1406.	3.3	83
21	Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures. Nano Letters, 2015, 15, 5420-5426.	9.1	81
22	Electrospun Polymeric Core–sheath Yarns as Drug Eluting Surgical Sutures. ACS Applied Materials & Interfaces, 2016, 8, 6925-6934.	8.0	80
23	In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications. Acta Biomaterialia, 2013, 9, 9568-9577.	8.3	74
24	Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug Ibuprofen-Sodium: An in vitro and in vivo analysis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 818-828.	3.3	74
25	A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydrate Polymers, 2011, 84, 887-893.	10.2	73
26	Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydrate Polymers, 2011, 85, 37-43.	10.2	54
27	Surface Plasma Treatment of Poly(caprolactone) Micro, Nano, and Multiscale Fibrous Scaffolds for Enhanced Osteoconductivity. Tissue Engineering - Part A, 2014, 20, 1689-1702.	3.1	51
28	Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro. Journal of Materials Chemistry, 2012, 22, 1326-1340.	6.7	50
29	Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents. Nanotechnology, 2012, 23, 095102.	2.6	50
30	Fabrication of Electrospun Poly (Lactide-co-Glycolide)–Fibrin Multiscale Scaffold for Myocardial Regeneration <i>In Vitro</i> . Tissue Engineering - Part A, 2013, 19, 849-859.	3.1	49
31	A Novel Method for the Fabrication of Fibrin-Based Electrospun Nanofibrous Scaffold for Tissue-Engineering Applications. Tissue Engineering - Part C: Methods, 2011, 17, 1121-1130.	2.1	48
32	Bioinspired Composite Matrix Containing Hydroxyapatite–Silica Core–Shell Nanorods for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 26707-26718.	8.0	48
33	Folate targeted polymeric â€~green' nanotherapy for cancer. Nanotechnology, 2010, 21, 285107.	2.6	46
34	<i>In vitro</i> targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine, 2012, 7, 507-519.	3.3	43
35	ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology, 2014, 25, 115101.	2.6	43
36	Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochimica Acta, 2010, 55, 3703-3713.	5.2	42

#	Article	IF	CITATIONS
37	Biocompatible and Antibacterial Nanofibrous Poly(<i>ϵ</i> -caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 131-138.	2.2	42
38	Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoridenanocrystals for targeted labeling of cancer cells. Biomaterials Science, 2013, 1, 294-305.	5.4	42
39	Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. International Journal of Biological Macromolecules, 2014, 69, 532-541.	7.5	42
40	CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology, 2011, 22, 285102.	2.6	41
41	Actively Targeted Cetuximab Conjugated γ-Poly(glutamic acid)-Docetaxel Nanomedicines for Epidermal Growth Factor Receptor Over Expressing Colon Cancer Cells. Journal of Biomedical Nanotechnology, 2014, 10, 1416-1428.	1.1	41
42	Hematotoxicological analysis of surfaceâ€modified and â€unmodified chitosan nanoparticles. Journal of Biomedical Materials Research - Part A, 2013, 101, 2957-2966.	4.0	38
43	Rapid detection of oral cancer using Ag–TiO2 nanostructured surface-enhanced Raman spectroscopic substrates. Journal of Materials Chemistry B, 2014, 2, 989-998.	5.8	37
44	Impact of poly(lactic- co -glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1058-1066.	5.0	37
45	A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. International Journal of Biological Macromolecules, 2015, 74, 575-584.	7.5	36
46	Highly biocompatible TiO2:Gd3+ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. Nanoscale, 2011, 3, 4150.	5.6	34
47	Preparation of Budesonide-Loaded Polycaprolactone Nanobeads by Electrospraying for Controlled Drug Release. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2431-2444.	3.5	34
48	Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 274-284.	3.3	33
49	Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomaterials Science, 2020, 8, 2653-2665.	5.4	32
50	Bone Tissue Engineering with Multilayered Scaffolds—Part I: An Approach for Vascularizing Engineered Constructs <i>In Vivo</i> . Tissue Engineering - Part A, 2015, 21, 2480-2494.	3.1	31
51	Gelatin nanoparticles loaded poly(\$ lower1.5pthbox{\$epsfbox{images/bmm421417un01.eps}\$}) Tj ETQq1 1 0 Materials (Bristol), 2012, 7, 065001.	.784314 rg 3.3	gBT /Overlock 28
52	Fabrication of Fibrin Based Electrospun Multiscale Composite Scaffold for Tissue Engineering Applications. Journal of Biomedical Nanotechnology, 2013, 9, 790-800.	1.1	28
53	Transforming Nanofibers into Woven Nanotextiles for Vascular Application. ACS Applied Materials & Interfaces, 2018, 10, 19449-19458.	8.0	27
54	Green Synthesis of Biocompatible Gold Nanocrystals with Tunable Surface Plasmon Resonance Using Garlic Phytochemicals. Journal of Biomedical Nanotechnology, 2012, 8, 901-911.	1.1	26

#	Article	IF	CITATIONS
55	Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohydrate Polymers, 2020, 248, 116763.	10.2	26
56	Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing. Materials Science and Engineering C, 2017, 75, 115-124.	7.3	25
57	Targeted Labeling of Cancer Cells Using Biotin Tagged Avidin Functionalized Biocompatible Fluorescent Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 7611-7620.	0.9	24
58	Development and haematotoxicological evaluation of doped hydroxyapatite based multimodal nanocontrast agent for near-infrared, magnetic resonance and X-ray contrast imaging. Nanotoxicology, 2012, 6, 652-666.	3.0	24
59	Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia. ACS Applied Materials & Interfaces, 2017, 9, 28260-28272.	8.0	24
60	Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opinion on Drug Delivery, 2018, 15, 481-494.	5.0	24
61	Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting. Nanoscale, 2015, 7, 832-841.	5.6	23
62	Stable Titania Nanostructures on Stainless Steel Coronary Stent Surface for Enhanced Corrosion Resistance and Endothelialization. Advanced Healthcare Materials, 2017, 6, 1601353.	7.6	23
63	Generation of a biomimetic 3D microporous nano-fibrous scaffold on titanium surfaces for better osteointegration of orthopedic implants. Journal of Materials Chemistry, 2012, 22, 1904-1915.	6.7	21
64	Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects. Tissue Engineering - Part A, 2017, 23, 345-358.	3.1	21
65	Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. Journal of Controlled Release, 2019, 305, 29-40.	9.9	21
66	Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioengineering, 2021, 5, 021508.	6.2	21
67	Rationally Designed Aberrant Kinase-Targeted Endogenous Protein Nanomedicine against Oncogene Mutated/Amplified Refractory Chronic Myeloid Leukemia. Molecular Pharmaceutics, 2012, 9, 3062-3078.	4.6	20
68	Nanofibrous Polydioxanone Depots for Prolonged Intraperitoneal Paclitaxel Delivery. Current Drug Delivery, 2019, 16, 654-662.	1.6	20
69	Nanofibrous yarn reinforced HA-gelatin composite scaffolds promote bone formation in critical sized alveolar defects in rabbit model. Biomedical Materials (Bristol), 2018, 13, 065011.	3.3	19
70	Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation. Colloids and Surfaces B: Biointerfaces, 2017, 150, 242-249.	5.0	16
71	Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regenerative Engineering and Translational Medicine, 2020, 6, 29-49.	2.9	16
72	Hydroxyapatite-Reinforced Polyamide 6,6 Nanocomposites through Melt Compounding. International Journal of Polymeric Materials and Polymeric Biomaterials, 2010, 59, 498-509.	3.4	15

#	Article	IF	CITATIONS
73	A Polymer-Protein Core–Shell Nanomedicine for Inhibiting Cancer Migration Followed by Photo-Triggered Killing. Journal of Biomedical Nanotechnology, 2014, 10, 1401-1415.	1.1	14
74	Successful Reduction of Neointimal Hyperplasia on Stainless Steel Coronary Stents by Titania Nanotexturing. ACS Omega, 2020, 5, 17582-17591.	3.5	13
75	Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 165, 371-380.	5.0	12
76	Bioinspired nanocomposite fibrous scaffold mediated delivery of ONO-1301 and BMP2 enhance bone regeneration in critical sized defect. Materials Science and Engineering C, 2020, 110, 110591.	7.3	10
77	ONO-1301 loaded nanocomposite scaffolds modulate cAMP mediated signaling and induce new bone formation in critical sized bone defect. Biomaterials Science, 2020, 8, 884-896.	5.4	9
78	Design, Development, and Evaluation of an Interwoven Electrospun Nanotextile Vascular Patch. Macromolecular Materials and Engineering, 2021, 306, 2100359.	3.6	9
79	Electrical stimulation of co-woven nerve conduit for peripheral neurite differentiation. Biomedical Materials (Bristol), 2020, 15, 065015.	3.3	9
80	Development and molecular characterization of polymeric micro-nanofibrous scaffold of a defined 3-D niche for in vitro chemosensitivity analysis against acute myeloid leukemia cells. International Journal of Nanomedicine, 2015, 10, 3603.	6.7	8
81	Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. Materials Science and Engineering C, 2019, 104, 109864.	7.3	8
82	Effect of formulation parameters on pharmacokinetics, pharmacodynamics, and safety of diclofenac nanomedicine. Drug Delivery and Translational Research, 2019, 9, 867-878.	5.8	8
83	Mn-doped Zinc Sulphide nanocrystals for immunofluorescent labeling of epidermal growth factor receptors on cells and clinical tumor tissues. Nanotechnology, 2014, 25, 445102.	2.6	7
84	Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties, and Toxicological Evaluation. Advances in Polymer Science, 2013, , 241-267.	0.8	6
85	A novel small diameter nanotextile arterial graft is associated with surgical feasibility and safety and increased transmural endothelial ingrowth in pig. Journal of Nanobiotechnology, 2022, 20, 71.	9.1	6
86	O-Carboxymethyl Chitosan Nanoparticles for Controlled Release of Non-Steroidal Anti-Inflammatory Drugs. Advanced Science, Engineering and Medicine, 2014, 6, 522-530.	0.3	5
87	Nanocomposite fibrous scaffold mediated mandible reconstruction and dental rehabilitation: An experimental study in pig model. Materials Science and Engineering C, 2021, , 112631.	7.3	5
88	Nanofibrous Facemasks with Curcumin for Improved Bacterial/Particulate Filtration and Biocidal Activity. ACS Applied Polymer Materials, 2022, 4, 4839-4849.	4.4	4
89	Anisotropic microparticles for differential drug release in nerve block anesthesia. RSC Advances, 2021, 11, 4623-4630.	3.6	3
90	Graphene Quantum Dots Alter Proliferation and Meiosis of Germ Cells Only in Genetic Females of Japanese Medaka during Early Embryonic Development. ACS Applied Bio Materials, 2019, 2, 737-746.	4.6	2

#	Article	IF	CITATIONS
91	From nonwoven fibers to woven nanotextiles. , 2021, , 123-156.		1
92	Superhydrophilic multifunctional nanotextured titanium dental implants: <i>in vivo</i> short and long-term response in a porcine model. Biomaterials Science, 2022, 10, 728-743.	5.4	1
93	Nanoparticles as Drug Delivery Vehicles for the Therapy of Inflammatory Disorders. Frontiers in Nanobiomedical Research, 2013, , 477-516.	0.1	Ο
94	Nanoparticles as Drug Delivery Vehicles for the Therapy of Inflammatory Disorders. Frontiers in Nanobiomedical Research, 2016, , 165-204.	0.1	0
95	Silk-based bilayered small diameter woven vascular conduits for improved mechanical and cellular characteristics. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-10.	3.4	Ο
96	Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules. Recent Advances in Drug Delivery and Formulation, 2022, 16, 241-252.	0.9	0