
Wolfgang Kautek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Femtosecond Optical Breakdown in Dielectrics. Physical Review Letters, 1998, 80, 4076-4079.	2.9	820
2	Femtosecond laser ablation of silicon–modification thresholds and morphology. Applied Physics A: Materials Science and Processing, 2002, 74, 19-25.	1.1	684
3	Ultrashort-pulse laser ablation of indium phosphide in air. Applied Physics A: Materials Science and Processing, 2001, 72, 89-94.	1.1	228
4	Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps. Applied Physics Letters, 1996, 69, 3146-3148.	1.5	207
5	Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Applied Surface Science, 2000, 154-155, 555-560.	3.1	200
6	Fundamentals of ultrafast laser–material interaction. MRS Bulletin, 2016, 41, 960-968.	1.7	185
7	Femtosecond laser interaction with silicon under water confinement. Thin Solid Films, 2004, 467, 334-341.	0.8	155
8	Ultrashort Pulse Laser Interaction with Dielectrics and Polymers. Advances in Polymer Science, 2004, , 247-290.	0.4	153
9	Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Applied Physics A: Materials Science and Processing, 2000, 71, 657-665.	1.1	137
10	Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials and Solar Cells, 1990, 20, 149-165.	0.4	132
11	XPS Studies of Anodic Surface Films on Copper Electrodes. Journal of the Electrochemical Society, 1990, 137, 2672-2677.	1.3	124
12	Laser ablation thresholds of silicon for different pulse durations: theory and experiment. Applied Surface Science, 2002, 197-198, 839-844.	3.1	124
13	The Role of Carrier Diffusion and Indirect Optical Transitions in the Photoelectrochemical Behavior of Layer Type dâ€Band Semiconductors. Journal of the Electrochemical Society, 1980, 127, 2471-2478.	1.3	118
14	On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses. Optical Engineering, 2005, 44, 051107.	0.5	112
15	The Applicability of Semiconducting Layered Materials for Electrochemical Solar Energy Conversion. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1980, 84, 1034-1040.	0.9	89
16	Femtosecond pulse laser processing of TiN on silicon. Applied Surface Science, 2000, 154-155, 659-663.	3.1	86
17	Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures. Applied Physics A: Materials Science and Processing, 2005, 81, 65-70.	1.1	86
18	Anisotropic photocorrosion of n-type MoS2 MoSe2, and WSe2 single crystal surfaces: the role Of cleavage steps, line and screw dislocations. Surface Science, 1982, 119, 46-60.	0.8	83

#	Article	IF	CITATIONS
19	Incubation of laser ablation in fused silica with 5-fs pulses. Applied Physics A: Materials Science and Processing, 1999, 69, 465-466.	1.1	80
20	Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2003, 77, 883-884.	1.1	79
21	Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials. , 1994, 2207, 600.		77
22	Femtosecond-pulse laser ablation of human corneas. Applied Physics A: Solids and Surfaces, 1994, 58, 513-518.	1.4	64
23	Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel. Applied Surface Science, 2017, 396, 1736-1740.	3.1	64
24	Formation of Yî—Baî—Cuî—oxide thin films by pulsed laser deposition: A comparative study in the UV, visible and IR range. Thin Solid Films, 1990, 191, 317-334.	0.8	58
25	Photoablation with sub-10 fs laser pulses. Applied Surface Science, 2000, 154-155, 11-16.	3.1	57
26	Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations. Applied Surface Science, 2002, 202, 272-282.	3.1	57
27	Semiconductor Properties of Passive Films on Zn, Zn o, and Znâ€Ni Substrates. Journal of the Electrochemical Society, 1989, 136, 3773-3779.	1.3	55
28	Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation. Thin Solid Films, 2004, 453-454, 537-541.	0.8	53
29	Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Applied Surface Science, 2005, 247, 406-411.	3.1	53
30	Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air. Applied Surface Science, 2018, 433, 772-779.	3.1	53
31	Laser interaction with coated collagen and cellulose fibre composites: fundamentals of laser cleaning of ancient parchment manuscripts and paper. Applied Surface Science, 1998, 127-129, 746-754.	3.1	52
32	Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass. Applied Physics A: Materials Science and Processing, 1999, 69, S763-S766.	1.1	49
33	Physical chemistry of the femtosecond and nanosecond laser–material interaction with SiC and a SiC–TiC–TiB2 composite ceramic compound. Applied Surface Science, 2003, 208-209, 285-291.	3.1	49
34	Pulse reverse plating of Ni–Co alloys: Deposition kinetics of Watts, sulfamate and chloride electrolytes. Electrochimica Acta, 2006, 52, 1145-1151.	2.6	49
35	Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Physical Chemistry Chemical Physics, 2011, 13, 4155.	1.3	49
36	Transition metal effects in the corrosion protection of electroplated zinc alloy coatings. Electrochimica Acta, 1994, 39, 1151-1157.	2.6	47

#	Article	IF	CITATIONS
37	In-situ grazing incidence X-ray diffractometry observation of pitting corrosion of copper in chloride solutions. Corrosion Science, 1999, 41, 1899-1909.	3.0	47
38	In situ FTIR spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes. Electrochimica Acta, 2001, 47, 815-823.	2.6	45
39	Near-UV and visible pulsed laser interaction with paper. Journal of Cultural Heritage, 2000, 1, S221-S224.	1.5	43
40	Nanocrystalline Ga ₂ O ₃ films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates. Journal of Materials Chemistry C, 2019, 7, 69-77.	2.7	43
41	Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite. Applied Physics A: Materials Science and Processing, 1999, 69, S403-S407.	1.1	42
42	In Situ Investigations of Bromineâ€Storing Complex Formation in a Zincâ€Flow Battery at Gold Electrodes. Journal of the Electrochemical Society, 1999, 146, 3211-3216.	1.3	41
43	The photoelectrochemistry of the aqueous iodide/iodine redox system at n-type MoSe2-electrodes. Electrochimica Acta, 1981, 26, 1771-1778.	2.6	40
44	A complementary study of bonding and electronic structure of amorphous carbon films by electron spectroscopy and optical techniques. Diamond and Related Materials, 2001, 10, 960-964.	1.8	40
45	Femtosecond Laser Processing of Soft Materials The Review of Laser Engineering, 2001, 29, 705-709.	0.0	40
46	Femtosecond laser damage of a high reflecting mirror. Thin Solid Films, 2002, 408, 297-301.	0.8	40
47	Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. Physical Chemistry Chemical Physics, 2014, 16, 2289-2296.	1.3	40
48	An electrochemical impedance spectroscopy study of passive zinc and low alloyed zinc electrodes in alkaline and neutral aqueous solutions. Corrosion Science, 1991, 32, 621-633.	3.0	39
49	The precision of the femtosecond-pulse laser ablation of TiN films on silicon. Applied Physics A: Materials Science and Processing, 1999, 69, S399-S402.	1.1	39
50	Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps. Applied Surface Science, 1998, 127-129, 892-898.	3.1	38
51	The galvanic corrosion of steel coatings: aluminum in comparison to cadmium and zinc. Corrosion Science, 1988, 28, 173-199.	3.0	37
52	Femtosecond pulse visible laser processing of fibre composite materials. Applied Surface Science, 1996, 106, 383-389.	3.1	37
53	Aluminum-electrocrystallization from metal—organic electrolytes. Electrochimica Acta, 1989, 34, 1213-1218.	2.6	35
54	Single- and multi-pulse femtosecond laser ablation of optical filter materials. Applied Surface Science, 2003, 208-209, 233-237.	3.1	35

4

#	Article	IF	CITATIONS
55	Homogeneous and amorphous sputtered sp3-bonded BN films at RT: a stress, spectroscopic ellipsometry and XPS study. Diamond and Related Materials, 2003, 12, 1151-1156.	1.8	34
56	Thin Pyrite Films Prepared by Sulphurization of Electrodeposited Iron Films. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1470-1475.	0.9	32
57	Pulsed-laser deposition and boron-blending of diamond-like carbon (DLC) thin films. Applied Surface Science, 1996, 106, 158-165.	3.1	32
58	Comprehensive study on the properties of multilayered amorphous carbon films. Diamond and Related Materials, 2000, 9, 756-760.	1.8	32
59	Combined Scanning Force Microscopy and Electrochemical Quartz Microbalancein-Situlnvestigation of Specific Adsorption and Phase Change Processes at the Silver/Halogenide Interface. Journal of Physical Chemistry B, 1997, 101, 2709-2715.	1.2	31
60	Thermodynamic aspects of pyrite film formation by sulphur conversion of iron. Thin Solid Films, 1992, 219, 37-45.	0.8	29
61	Femtosecond laser processing of biopolymers at high repetition rate. Physical Chemistry Chemical Physics, 2008, 10, 6174.	1.3	29
62	XPS Studies on Emersed Silver Electrodes: Coverage and Bonding State of Specifically Adsorbed Chloride. Journal of the Electrochemical Society, 1990, 137, 3405-3409.	1.3	28
63	Solution-processed all-oxide solar cell based on electrodeposited Cu2O and ZnMgO by spray pyrolysis. Journal of Materials Science, 2018, 53, 12231-12243.	1.7	28
64	Template electrodeposition of nanowire arrays on gold foils fabricated by pulsed-laser deposition. Electrochimica Acta, 1995, 40, 1461-1468.	2.6	27
65	Characterization of laser-treated paper. Applied Physics A: Materials Science and Processing, 2004, 79, 181-186.	1.1	27
66	A Multivariate Curve Resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide. Electrochimica Acta, 2017, 255, 160-167.	2.6	26
67	Reactive groups on polymer coated electrodes: 10. Electrogenerated conducting polyalkylthiophenes bearing activated ester groups. Polymer, 2000, 41, 423-432.	1.8	24
68	A study on the bonding structure and mechanical properties of magnetron sputtered CNx thin films. Diamond and Related Materials, 2001, 10, 1179-1184.	1.8	24
69	Femtosecond pulse laser ablation of anodic oxide coatings on aluminium alloys with on-line acoustic observation. Applied Surface Science, 2002, 186, 374-380.	3.1	24
70	Femtosecond laser generation of microbumps and nanojets on single and bilayer Cu/Ag thin films. Physical Chemistry Chemical Physics, 2019, 21, 11846-11860.	1.3	24
71	Intercomparison of scanning probe microscopes. Precision Engineering, 2002, 26, 296-305.	1.8	23
72	Electrodeposition of copper and cobalt nanostructures using self-assembled monolayer templates. Surface Science, 2005, 597, 32-41.	0.8	23

#	Article	IF	CITATIONS
73	Femto- and nanosecond pulse laser ablation dependence on irradiation area: The role of defects in metals and semiconductors. Applied Surface Science, 2017, 418, 487-490.	3.1	23
74	Subpicosecond-pulse laser microstructuring for enhanced reproducibility of biosensors. Sensors and Actuators B: Chemical, 1997, 42, 151-156.	4.0	22
75	Near-UV laser interaction with contaminants and pigments on parchment: laser cleaning diagnostics by SE-microscopy, VIS-, and IR-spectroscopy. Journal of Cultural Heritage, 2000, 1, S233-S240.	1.5	22
76	Pulse plating of nickel: influence of electrochemical parameters and composition of electrolyte. Transactions of the Institute of Metal Finishing, 2007, 85, 22-26.	0.6	22
77	On the homogeneity region, growth modes and optoelectronic properties of chalcopyrite-type CulnS2. Physica Status Solidi (B): Basic Research, 2008, 245, 1761-1771.	0.7	22
78	Merging Spot Size and Pulse Number Dependence of Femtosecond Laser Ablation Thresholds: Modeling and Demonstration with High Impact Polystyrene. Journal of Physical Chemistry C, 2015, 119, 22992-22998.	1.5	22
79	Electronic mobility anisotropy of layered semiconductors: transversal photoconductivity measurements at n-MoSe2. Journal of Physics C: Solid State Physics, 1982, 15, L519-L525.	1.5	21
80	Formation of an Inversion Layer in nâ€Type MoSe ₂ Electrodes: Observation in the Presence of Highly Oxidizing Redox Systems. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1982, 86, 20-25.	0.9	21
81	Electrochemistry of nano-scale bacterial surface protein layers on gold. Bioelectrochemistry, 2003, 61, 1-8.	2.4	21
82	Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica. Applied Physics A: Materials Science and Processing, 2004, 79, 1075-1077.	1.1	21
83	Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition. Materials Science and Engineering C, 2005, 25, 727-732.	3.8	21
84	Atomic emission stratigraphy by laser-induced plasma spectroscopy: Quantitative depth profiling of metal thin film systems. Applied Surface Science, 2014, 302, 189-193.	3.1	21
85	Laserâ€Assisted Synthesis of Colloidal FeW _x O _y and Fe/Fe _x O _y Nanoparticles in Water and Ethanol. ChemPhysChem, 2018, 19, 1414-1419.	1.0	21
86	Pyrite film formation by H2S reactive annealing of iron. Thin Solid Films, 1994, 238, 213-217.	0.8	20
87	Femtosecond-pulse laser processing of metallic and semiconducting thin films. , 1995, , .		20
88	Electrodeposition of bismuth and silver phases in nanometer-sized zero-dimensional STM-formed cavities on gold(111). Electrochimica Acta, 2001, 47, 679-687.	2.6	20
89	On the impedance of porous electrodes – double-layer charging and charge transfer on an inhomogeneous inside electrode surface. Journal of Electroanalytical Chemistry, 2004, 561, 29-35.	1.9	20
90	Laserâ€Assisted Synthesis of Colloidal Ni/NiO _{<i>x</i>} Core/Shell Nanoparticles in Water and Alcoholic Solvents. ChemPhysChem, 2017, 18, 1118-1124.	1.0	20

#	Article	IF	CITATIONS
91	Mg-doped ZnO films prepared by chemical bath deposition. Journal of Materials Science, 2018, 53, 5159-5171.	1.7	20
92	Design and Development of Oleoresins Rich in Carotenoids Coated Microbeads. Coatings, 2019, 9, 235.	1.2	20
93	Diagnostics of parchment laser cleaning in the near-ultraviolet and near-infrared wavelength range: a systematic scanning electron microscopy study. Journal of Cultural Heritage, 2003, 4, 179-184.	1.5	19
94	Interaction area dependence of the ablation threshold of ion-doped glass. Thin Solid Films, 2004, 453-454, 527-530.	0.8	19
95	A kinetic interpretation of the photocurrents obtained with [Fe(CN)6]4â^', Fe(II), and Iâ^' at n-type MoSe2- and WSe2-electrodes. Electrochimica Acta, 1981, 26, 1709-1713.	2.6	18
96	Modeling and diagnostics of pulsed laser-solid interactions: applications to laser cleaning. , 2000, 3885, 499.		18
97	A kinetic derivation of the photovoltage for electrochemical solar cells employing small-band-gap semiconductors. Electrochimica Acta, 1982, 27, 355-358.	2.6	17
98	Depth profile characterization of electrodeposited multi-thin-film structures by low angle of incidence X-ray diffractometry. Thin Solid Films, 2005, 489, 86-93.	0.8	17
99	Femtosecond laser interaction with protection materials. Applied Surface Science, 2003, 208-209, 333-339.	3.1	16
100	Influence of the aqueous solution composition on the morphology of Zn _{1â^'x} Mg _x O films deposited by spray pyrolysis. Journal of Materials Chemistry C, 2019, 7, 3889-3900.	2.7	16
101	Depth profiling of galvanoaluminium–nickel coatings on steel by UV- and VIS-LIBS. Applied Surface Science, 2017, 418, 508-516.	3.1	15
102	50-nanometer femtosecond pulse laser induced periodic surface structures on nitrogen-doped diamond. Diamond and Related Materials, 2017, 74, 114-118.	1.8	15
103	Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids. Journal of Industrial and Engineering Chemistry, 2020, 81, 340-351.	2.9	15
104	Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms. Applied Physics A: Materials Science and Processing, 2013, 111, 539-548.	1.1	14
105	Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose. Applied Surface Science, 2013, 276, 53-61.	3.1	14
106	Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber. Optics Express, 2015, 23, 26139.	1.7	14
107	The impedance of the n-MoSe2/acetonitrile interface: a kinetic and energetic characterization. Electrochimica Acta, 1982, 27, 1035-1042.	2.6	13
108	Reactivity of water in the oxidation of n-type MoSe2 single crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 137, 239-245.	0.3	13

#	Article	IF	CITATIONS
109	<title>Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs
and 3 ps</title> . , 1997, , .		13
110	Pulsed-laser metal contacting of biosensors on the basis of crystalline enzyme-protein layer composites. Sensors and Actuators B: Chemical, 1997, 40, 231-236.	4.0	13
111	In-situ grazing incidence X-ray diffractometry investigation of phase change processes at the silver/aqueous–halogenide interface. Electrochimica Acta, 1998, 43, 2985-2989.	2.6	13
112	Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 13232.	1.3	13
113	In-situ grazing incidence X-ray diffractometry of polycrystalline copper in alkaline chloride and sulphate electrolytes. Electrochimica Acta, 1998, 43, 2979-2984.	2.6	12
114	Subwavelength Nanostructuring of Gold Films by Apertureless Scanning Probe Lithography Assisted by a Femtosecond Fiber Laser Oscillator. Nanomaterials, 2018, 8, 536.	1.9	12
115	Study of the physicochemical surface alterations and incubation phenomena induced on iron targets by nanosecond pulsed laser ablation in liquids: Effect on productivity and characteristics of the synthesized nanoscale zero-valent iron (nZVI) particles. Applied Surface Science, 2020, 511, 145438.	3.1	11
116	Physico-chemical properties of crystalline nanoscale enzyme-protein-metal layer composites in biosensors. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1686-1689.	0.9	10
117	Femtosecond laser damage in dielectric coatings. , 2001, 4347, 24.		10
118	Probing the limits of paper and parchment laser cleaning by multispectral imaging. , 2001, 4402, 130.		10
119	<i>In-situ</i> and non-destructive focus determination device for high-precision laser applications. Journal of Optics (United Kingdom), 2016, 18, 095401.	1.0	10
120	The role of glycine in the iron-phosphorous alloy electrodeposition. Electrochimica Acta, 2019, 309, 450-459.	2.6	10
121	Electrodeposition and corrosion behaviour of nanocrystalline Fe–P coatings. Transactions of the Institute of Metal Finishing, 2019, 97, 89-94.	0.6	10
122	Reactive groups on polymer coated electrodes, 12. New conducting carrier materials: polyalkylthiophene functionalized with amino group and its protected forms. Macromolecular Chemistry and Physics, 2000, 201, 21-30.	1.1	9
123	Mechanistic comparison of pulse laser induced phase separation of particulates from cellulose paper at 213 nm and 532 nm. Applied Physics A: Materials Science and Processing, 2013, 110, 501-509.	1.1	9
124	In Situ FTIR and in Situ QMB Study of the Electrochemistry of Graphene Oxide on Platinum. Journal of Physical Chemistry C, 2016, 120, 15563-15568.	1.5	9
125	Electrodeposition of Nanocrystalline Fe-P Coatings: Influence of Bath Temperature and Glycine Concentration on Structure, Mechanical and Corrosion Behavior. Coatings, 2019, 9, 189.	1.2	9
126	Reactive groups on polymer-coated electrodes, 9. New electroactive polythiophenes with epoxy and cyclic carbonate groups. Macromolecular Chemistry and Physics, 1999, 200, 450-459.	1.1	8

#	Article	IF	CITATIONS
127	Microcorrosion and shock-affected zone investigation at anodic films on aluminium alloys by pulse laser depassivation. Physical Chemistry Chemical Physics, 2001, 3, 5283-5289.	1.3	8
128	Lasers in Cultural Heritage: The Non-Contact Intervention. Springer Series in Materials Science, 2010, , 331-349.	0.4	8
129	Optical Anisotropy of Transition Metal Dichalcogenides. A Photoelectrochemical Determination. Physica Status Solidi (B): Basic Research, 1984, 122, 651-659.	0.7	7
130	Corrosion Behaviour and Mechanical Properties of Plated Zn-Alloys. Transactions of the Institute of Metal Finishing, 1997, 75, 216-218.	0.6	7
131	Femtosecond and nanosecond laser removal of anodic oxide layers from aluminum. , 2002, , .		7
132	Laser-induced alteration of contaminated papers. Applied Physics A: Materials Science and Processing, 2004, 79, 941-944.	1.1	7
133	Middle-ultraviolet laser cleaning of particulates from sized ground wood cellulose and pure cellulose paper. Journal of Cultural Heritage, 2014, 15, 602-608.	1.5	7
134	Rapid Processing of In-Doped ZnO by Spray Pyrolysis from Environment-Friendly Precursor Solutions. Coatings, 2019, 9, 245.	1.2	7
135	Femtosecond laser generation of bimetallic oxide nanoparticles with potential X-ray absorbing and magnetic functionalities for medical imaging applications. Ceramics International, 2021, 47, 29363-29370.	2.3	7
136	Simultaneous UV-IR Nd:YAG Laser Cleaning of Leather Artifacts. , 2007, , 221-227.		7
137	Deposition methods of high-Tc superconductors. Vacuum, 1992, 43, 403-411.	1.6	6
138	Chromate-Free Zinc Conversion Coatings Characterised by Grazing Incidence X-Ray Diffractometry. Mikrochimica Acta, 2000, 133, 137-142.	2.5	6
139	Electrochemical reactivity of laser-machined microcavities on anodised aluminium alloys. Electrochimica Acta, 2003, 48, 3249-3255.	2.6	6
140	Ultrashort pulse lasers: new aspects of materials interaction. , 2004, , .		6
141	Electrochemical control of adsorption dynamics of surface layer proteins on gold. Physical Chemistry Chemical Physics, 2011, 13, 3478-3483.	1.3	6
142	Femtosecond laser interaction withÂpulsed-laser deposited carbon thin films ofÂnanoscale thickness. Applied Physics A: Materials Science and Processing, 2011, 102, 27-33.	1.1	6
143	Laser-induced cantilever behaviour in apertureless scanning near-field optical microscopes. Measurement Science and Technology, 2014, 25, 075604.	1.4	6
144	Multiple wavelength stratigraphy by laser-induced breakdown spectroscopy of Ni-Co alloy coatings on steel. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 36-40.	1.5	6

#	Article	IF	CITATIONS
145	Alkoxylated β-Naphthol as an Additive for Tin Plating from Chloride and Methane Sulfonic Acid Electrolytes. Coatings, 2018, 8, 79.	1.2	6
146	Pulsed laser deposition of HI-TC-superconductor films in the ultraviolet, visible, and near-infrared range. Journal of the Less Common Metals, 1990, 164-165, 292-299.	0.9	5
147	Semiconductor properties of passive films on Zn, Znî—,Co, and Znî—,Ni substrates and ZnO single crystals. Corrosion Science, 1990, 31, 679-684.	3.0	5
148	Non-Thermal Material Response to Laser Energy Deposition. Springer Series in Materials Science, 2014, , 43-66.	0.4	5
149	Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy. Biomedical Optics Express, 2017, 8, 3526.	1.5	5
150	Aqueous Spray Pyrolysis of Cu 2 O Films: Influence of Reducing Agent and Acetic Acid Addition. ChemNanoMat, 2020, 6, 663-671.	1.5	5
151	Ultrafast Laser Micro- and Nanostructuring. Springer Series in Materials Science, 2010, , 189-213.	0.4	5
152	Near-Ultraviolet Pulsed Laser Interaction with Contaminants and Pigments on Parchment: Spectroscopic Diagnostics for Laser Cleaning Safety. , 2000, , 100-107.		5
153	<title>Pulsed laser deposition of boron carbide: spectroscopic study of laser ablation plasma</title> . , 1997, , .		4
154	Biomaterial immobilization on polyurethane films by XeCl excimer laser processing. Applied Physics A: Materials Science and Processing, 2001, 72, 53-57.	1.1	4
155	Laser-induced electrochemical de- and repassivation investigations on plasma-oxidized aluminium alloys. Applied Surface Science, 2014, 302, 184-188.	3.1	4
156	Laser cleaning of paper: Cleaning efficiency and irradiation dose. Studies in Conservation, 2015, 60, S97-S105.	0.6	4
157	Repassivation Investigations on Aluminium: Physical Chemistry of the Passive State. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1303-1327.	1.4	4
158	The Role of Defects in Pulsed Laser Matter Interaction. Springer Series in Materials Science, 2018, , 39-61.	0.4	4
159	Highly Photosensitive Daguerreotypes and their Reproduction: Physicoâ€chemical Elucidation of Innovative Processes in Photography Developed around 1840 in Vienna. ChemPlusChem, 2019, 84, 1730-1738.	1.3	4
160	Laser-Induced Non-thermal Processes. , 2020, , 1-23.		4
161	Traditional and Laser Cleaning Methods of Historic Picture Post Cards. Springer Proceedings in Physics, 2007, , 281-286.	0.1	4
162	SHG Measurements of n‣i(111)/aqueous Solution Interfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 402-406.	0.9	3

#	Article	IF	CITATIONS
163	Influence of surface morphology on the oxidation of metal electrodes studied by in-situ grazing incidence x-ray diffractometry. Fresenius' Journal of Analytical Chemistry, 1999, 363, 197-201.	1.5	3
164	Pulse laser-induced particle separation from polymethyl methacrylate: a mechanistic study. Applied Physics A: Materials Science and Processing, 2013, 111, 309-317.	1.1	3
165	Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	3
166	Thin film preparation of semiconducting iron pyrite. , 1990, , .		2
167	Femtosecond pulse laser machining of InP wafers. , 2000, , .		2
168	Femtosecond laser-induced damage in absorbing filters used for laser protection. , 2002, , .		2
169	Physical Chemistry of Ultrafast Laser Interactions with Solids. , 2007, , 215-229.		2
170	Laser Cleaning of Undyed Silk: Indications of Chemical Change. , 2007, , 313-320.		2
171	Photochemical surface modification of polyurethane films with biomaterial by excimer laser processing. , 1998, 3274, 128.		1
172	Report on session "Cleaning of organic materials: paper, parchment, textile, wood― Journal of Cultural Heritage, 2003, 4, 163-164.	1.5	1
173	Ultra-short pulse laser safety - a challenge to materials science. , 2005, , .		1
174	Interaction of pulse laser radiation of 532nm with model coloration layers for medieval stone artefacts. Applied Surface Science, 2014, 302, 314-317.	3.1	1
175	Duplication of uniqueness: electrotyping in nature printing and its application in contemporary art. Heritage Science, 2019, 7, 20.	1.0	1
176	Electrodeposition of Fe-Sn from the chloride-based electrolyte. Transactions of the Institute of Metal Finishing, 2019, 97, 247-253.	0.6	1
177	Tartrate-Based Electrolyte for Electrodeposition of Fe–Sn Alloys. Coatings, 2019, 9, 313.	1.2	1
178	Apertureless Scanning Near-Field Optical Lithography. Springer Series in Materials Science, 2020, , 113-132.	0.4	1
179	Spot size dependence of femtosecond laser ablation of dielectrics. , 0, , .		0

180 Sub-picosecond laser material interaction., 0, , .

#	Article	IF	CITATIONS
181	<title>Lasers in conservation of artworks: the European Community research</title> . , 2005, , .		0
182	Laser cleaning of fibrous substrates. , 0, , .		0
183	Electrodeposition of Metals in Templates and STM Tip-Generated 0D Nanocavities. , 0, , 61-78.		0
184	Thermal diffusion control of femtosecond laser generated modifications of nanoscale pulsed-laser deposited diamond-like carbon films. , 2009, , .		0
185	In Situ Scanning Force Microscopy and In Situ Quartz Microbalance Investigations on the Influence of the Anion Adsorption on the Electrocrystallization of Surface Layer Proteins. Journal of Physical Chemistry C, 2014, 118, 29860-29865.	1.5	0
186	Pulse laser machining and particulate separation from high impact polystyrene. Applied Surface Science, 2014, 288, 9-14.	3.1	0
187	Liquid-assisted pulsed laser ablation: A novel route to produce multifunctional contrast agents for multimodal imaging diagnosis. , 2017, , .		0
188	Physicochemical characterization of electrodeposited printing plates from the early 1840s in Vienna. Microchemical Journal, 2020, 152, 104320.	2.3	0
189	Femotosecond-Pulse Laser Micromachining of Metal Layer Composites. , 1996, , 966-969.		0
190	Nanometer precision material ablation and optical breakdown with sub-10 fs pulses. Springer Series in Chemical Physics, 1998, , 313-315.	0.2	0
191	Laser-Induced Non-thermal Processes. , 2021, , 61-82.		0