List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508382/publications.pdf

Version: 2024-02-01

		18436	26548
315	15,514	62	107
papers	citations	h-index	g-index
225	225	225	15715
325	325	325	15/15
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279, 1-49.	4.1	714
2	Star Polymers. Chemical Reviews, 2016, 116, 6743-6836.	23.0	653
3	Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature Microbiology, 2016, 1, 16162.	5.9	610
4	Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS Nano, 2018, 12, 11819-11837.	7.3	428
5	Core cross-linked star polymers via controlled radical polymerisation. Polymer, 2009, 50, 5-32.	1.8	398
6	Some Aspects of the Properties and Degradation of Polyacrylamides. Chemical Reviews, 2002, 102, 3067-3084.	23.0	340
7	Visible Light Mediated Controlled Radical Polymerization in the Absence of Exogenous Radical Sources or Catalysts. Macromolecules, 2015, 48, 3864-3872.	2.2	260
8	Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization. Advanced Science, 2016, 3, 1500394.	5.6	249
9	Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 2018, 76, 40-64.	11.8	214
10	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	4.1	210
11	Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: the Next Generation of Cancer Medicine. Theranostics, 2015, 5, 23-42.	4.6	184
12	Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical Society Reviews, 2020, 49, 4737-4834.	18.7	178
13	The interrelationship between surface chemistry and rheology in alkali activated slag paste. Construction and Building Materials, 2014, 65, 583-591.	3.2	170
14	MOF-Mediated Destruction of Cancer Using the Cell's Own Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2017, 9, 33599-33608.	4.0	146
15	Cyclodextrinâ€Based Supramolecular Assemblies and Hydrogels: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2014, 35, 1166-1184.	2.0	142
16	Chemical Modification of Gelatin by a Natural Phenolic Cross-linker, Tannic Acid. Journal of Agricultural and Food Chemistry, 2010, 58, 6809-6815.	2.4	140
17	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie - International Edition, 2017, 56, 12302-12306.	7.2	139
18	Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science, 2020, 7, 2001656.	5.6	139

#	Article	IF	CITATIONS
19	Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry - A European Journal, 2019, 25, 5372-5388.	1.7	138
20	Water vapor permeation in polyimide membranes. Journal of Membrane Science, 2011, 379, 479-487.	4.1	135
21	Preparation of Porous Poly(dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Advanced Materials, 2006, 18, 3024-3028.	11.1	134
22	Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria. ACS Infectious Diseases, 2017, 3, 237-248.	1.8	134
23	Chemical Cross-Linking Gelatin with Natural Phenolic Compounds as Studied by High-Resolution NMR Spectroscopy. Biomacromolecules, 2010, 11, 1125-1132.	2.6	133
24	Operating temperature effects on the plasticization of polyimide gas separation membranes. Journal of Membrane Science, 2007, 294, 40-49.	4.1	126
25	Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy and Environmental Science, 2018, 11, 544-550.	15.6	125
26	pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films. Macromolecules, 2008, 41, 2620-2626.	2.2	122
27	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	7.3	118
28	Reversible diamine cross-linking of polyimide membranes. Journal of Membrane Science, 2007, 291, 199-209.	4.1	116
29	Nitrile Imines: Matrix Isolation, IR Spectra, Structures, and Rearrangement to Carbodiimides. Journal of the American Chemical Society, 2012, 134, 5339-5350.	6.6	116
30	Ultrathin chitosan–poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomaterialia, 2013, 9, 6594-6605.	4.1	115
31	Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11, 5705-5716.	2.8	112
32	Selectively Degradable Core Cross-Linked Star Polymers. Macromolecules, 2006, 39, 9018-9027.	2.2	109
33	Folic Acid Conjugated Amino Acid-Based Star Polymers for Active Targeting of Cancer Cells. Biomacromolecules, 2011, 12, 3469-3477.	2.6	109
34	The role of capsule stiffness on cellular processing. Chemical Science, 2015, 6, 3505-3514.	3.7	109
35	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
36	Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization. Polymer Chemistry, 2017, 8, 1519-1526.	1.9	108

#	Article	IF	CITATIONS
37	Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C ₃ N ₄). Macromolecules, 2017, 50, 7509-7516.	2.2	108
38	Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions. Polymer Chemistry, 2016, 7, 4246-4253.	1.9	105
39	Recent Advances in Star Polymer Design: Degradability and the Potential for Drug Delivery. Australian Journal of Chemistry, 2007, 60, 699.	0.5	103
40	Controlled Formation of Star Polymer Nanoparticles via Visible Light Photopolymerization. ACS Macro Letters, 2015, 4, 1012-1016.	2.3	95
41	Degradation on polyacrylamides. Part I. Linear polyacrylamide. Polymer, 2003, 44, 1331-1337.	1.8	94
42	Fabrication of Reversibly Crosslinkable, 3â€Đimensionally Conformal Polymeric Microstructures. Advanced Functional Materials, 2008, 18, 3315-3322.	7.8	93
43	Dramatic Morphology Control in the Fabrication of Porous Polymer Films. Advanced Functional Materials, 2008, 18, 3706-3714.	7.8	93
44	A novel cross-linked nano-coating for carbon dioxide capture. Energy and Environmental Science, 2016, 9, 434-440.	15.6	92
45	Patterning on Nonplanar Substrates:  Flexible Honeycomb Films from a Range of Self-assembling Star Copolymers. Langmuir, 2008, 24, 556-562.	1.6	84
46	Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chemical Communications, 2015, 51, 15566-15569.	2.2	81
47	CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515, 54-62.	4.1	81
48	Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrinâ€Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Advanced Healthcare Materials, 2018, 7, e1701324.	3.9	81
49	From UV to NIR: A Full‣pectrum Metalâ€Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie - International Edition, 2020, 59, 21392-21396.	7.2	78
50	High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal, 2020, 396, 125328.	6.6	78
51	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science, 2017, 535, 350-356.	4.1	75
52	Degradable Core Cross-Linked Star Polymers via Ring-Opening Polymerization. Macromolecules, 2006, 39, 4282-4285.	2.2	74
53	Oxygen Tolerant PET-RAFT Facilitated 3D Printing of Polymeric Materials under Visible LEDs. ACS Applied Polymer Materials, 2020, 2, 782-790.	2.0	73
54	Soft polymeric nanoparticle additives for next generation gas separation membranes. Journal of Materials Chemistry A, 2014, 2, 4999.	5.2	71

#	Article	IF	CITATIONS
55	Solid–liquid separations with a temperature-responsive polymeric flocculant: Effect of temperature and molecular weight on polymer adsorption and deposition. Journal of Colloid and Interface Science, 2010, 348, 9-23.	5.0	70
56	Star polymers composed entirely of amino acid building blocks: a route towards stereospecific, biodegradable and hierarchically functionalized stars. Chemical Communications, 2011, 47, 1151-1153.	2.2	70
57	Biodegradable and Biocompatible Poly(Ethylene Clycol)â€based Hydrogel Films for the Regeneration of Corneal Endothelium. Advanced Healthcare Materials, 2014, 3, 1496-1507.	3.9	70
58	Tertiary amine catalyzed photo-induced controlled radical polymerization of methacrylates. Polymer Chemistry, 2015, 6, 5362-5368.	1.9	67
59	Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 33446-33456.	4.0	65
60	Studies on microgels. 5. Synthesis of microgels via living free radical polymerisation. Polymer, 2001, 42, 5987-5991.	1.8	64
61	Highly permeable membrane materials for CO2 capture. Journal of Materials Chemistry A, 2013, 1, 13769.	5.2	64
62	Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution. Powder Technology, 2014, 266, 203-209.	2.1	64
63	Development of functional amino acid-based star polymers. Polymer Chemistry, 2012, 3, 224-234.	1.9	63
64	Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499, 191-200.	4.1	63
65	Synthesis of Dendron Functionalized Core Cross-linked Star Polymers. Macromolecules, 2007, 40, 7855-7863.	2.2	62
66	Ultra-thin film composite mixed matrix membranes incorporating iron(<scp>iii</scp>)–dopamine nanoparticles for CO ₂ separation. Nanoscale, 2016, 8, 8312-8323.	2.8	62
67	Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future. Chemical Communications, 2014, 50, 4971.	2.2	61
68	Polypeptide-Based Macroporous Cryogels with Inherent Antimicrobial Properties: The Importance of a Macroporous Structure. ACS Macro Letters, 2016, 5, 552-557.	2.3	61
69	Honeycomb coated particles: porous doughnuts, golf balls and hollow porous pockets. Soft Matter, 2007, 3, 837.	1.2	60
70	Blood atalyzed RAFT Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10288-10292.	7.2	60
71	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	7.6	60
72	Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste. Journal of Materials Science, 2014, 49, 2761-2772.	1.7	59

#	Article	IF	CITATIONS
73	Reactivity of Ketenes in Matrices. Direct Observation of Keteneâ^'Pyridine Ylides. Journal of the American Chemical Society, 1996, 118, 5634-5638.	6.6	58
74	Controlling carbon microporosity: the structure of carbons obtained from different phenolic resin precursors. Carbon, 2002, 40, 743-749.	5.4	57
75	Epoxy-amine synthesised hydrogel scaffolds for soft-tissue engineering. Biomaterials, 2010, 31, 6454-6467.	5.7	57
76	Stereospecific Cyclic Poly(methyl methacrylate) and Its Topologyâ€Guided Hierarchically Controlled Supramolecular Assemblies. Angewandte Chemie - International Edition, 2014, 53, 459-464.	7.2	55
77	Controlled Formation of Microheterogeneous Polymer Networks:  Influence of Monomer Reactivity on Gel Structure. Macromolecules, 2001, 34, 6396-6401.	2.2	54
78	Rheology of core cross-linked star polymers. Polymer, 2008, 49, 5095-5104.	1.8	53
79	Temperature responsive flocculation and solid–liquid separations with charged random copolymers of poly(N-isopropyl acrylamide). Journal of Colloid and Interface Science, 2011, 360, 61-70.	5.0	53
80	Nanobubble formation on a warmer substrate. Soft Matter, 2014, 10, 7857-7864.	1.2	53
81	Cyclodextrin-based supramolecular polymeric nanoparticles for next generation gas separation membranes. Journal of Materials Chemistry A, 2015, 3, 14876-14886.	5.2	53
82	Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules, 2018, 51, 8862-8869.	2.2	53
83	Photochromic, Metal-Absorbing Honeycomb Structures. Langmuir, 2010, 26, 10397-10400.	1.6	52
84	From transient nanodroplets to permanent nanolenses. Soft Matter, 2012, 8, 4314.	1.2	52
85	Modeling of the sorption and transport properties of water vapor in polyimide membranes. Journal of Membrane Science, 2012, 409-410, 96-104.	4.1	52
86	Biocompatible Single-Chain Polymeric Nanoparticles via Organo-Catalyzed Ring-Opening Polymerization. ACS Macro Letters, 2014, 3, 524-528.	2.3	52
87	Fentonâ€RAFT Polymerization: An "Onâ€Demand―Chainâ€Growth Method. Chemistry - A European Journal, 2017, 23, 7221-7226.	1.7	51
88	Controlled Formation and Binding Selectivity of Discrete Oligo(methyl methacrylate) Stereocomplexes. Journal of the American Chemical Society, 2018, 140, 1945-1951.	6.6	51
89	Thermal treatment of dense polyimide membranes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1879-1890.	2.4	50
90	The effect of soft nanoparticles morphologies on thin film composite membrane performance. Journal of Materials Chemistry A, 2014, 2, 17751-17756.	5.2	50

#	Article	IF	CITATIONS
91	Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chemical Science, 2015, 6, 1370-1378.	3.7	50
92	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602.	7.2	50
93	Highly Living Stars via Core-First Photo-RAFT Polymerization: Exploitation for Ultra-High Molecular Weight Star Synthesis. ACS Macro Letters, 2019, 8, 1291-1295.	2.3	50
94	Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly. Nature Communications, 2020, 11, 1630.	5.8	49
95	Synthesis of Core Cross-Linked Star Polymers with Adjustable Coronal Properties. Macromolecules, 2008, 41, 623-631.	2.2	48
96	Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 2463-2474.	2.6	48
97	Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules, 2016, 17, 2981-2991.	2.6	48
98	Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy, 2021, 81, 105657.	8.2	47
99	Degradable star polymers with high "click―functionality. Journal of Polymer Science Part A, 2009, 47, 1485-1498.	2.5	46
100	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	2.2	46
101	Synthesis of novel cylindrical bottlebrush polypseudorotaxane via inclusion complexation of high density poly(ε-caprolactone) bottlebrush polymer and α-cyclodextrins. Polymer Chemistry, 2012, 3, 343-351.	1.9	45
102	4,6-Dimethyl-o-quinone Methide and 4,6-Dimethylbenzoxete. Journal of Organic Chemistry, 1998, 63, 9806-9811.	1.7	44
103	The use of reduced copper metal–organic frameworks to facilitate CuAAC click chemistry. Chemical Communications, 2016, 52, 12226-12229.	2.2	44
104	Architectural Effects of Starâ€Shaped "Structurally Nanoengineered Antimicrobial Peptide Polymers― (SNAPPs) on Their Biological Activity. Advanced Healthcare Materials, 2018, 7, e1800627.	3.9	44
105	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	5.2	43
106	Organic Catalyst-Mediated Ring-Opening Polymerization for the Highly Efficient Synthesis of Polyester-Based Star Polymers. ACS Macro Letters, 2012, 1, 681-686.	2.3	43
107	Novel drug carriers: from grafted polymers to cross-linked vesicles. Chemical Communications, 2013, 49, 33-35.	2.2	43
108	Reversible Nontoxic Thermochromic Microcapsules. ACS Applied Materials & Interfaces, 2020, 12, 9782-9789.	4.0	43

#	Article	IF	CITATIONS
109	A unique ¹⁹ F MRI agent for the tracking of non phagocytic cells <i>in vivo</i> . Nanoscale, 2018, 10, 8226-8239.	2.8	42
110	Degradation on polyacrylamides. Part II. Polyacrylamide gels. Polymer, 2003, 44, 3817-3826.	1.8	41
111	Temperature responsive polymers as multiple function reagents in mineral processing. Advanced Powder Technology, 2009, 20, 273-279.	2.0	41
112	A novel one-pot approach towards dynamically cross-linked hydrogels. Soft Matter, 2013, 9, 5239.	1.2	41
113	Synthesis and characterization of fluorescently labeled core crossâ€linked star polymers. Journal of Polymer Science Part A, 2008, 46, 2422-2432.	2.5	40
114	Nanoâ€ŧoâ€Macroscale Poly(methyl methacrylate) Stereocomplex Assemblies. Angewandte Chemie - International Edition, 2009, 48, 8707-8711.	7.2	40
115	Fenton hemistryâ€Mediated Radical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1900220.	2.0	40
116	The effect of formaldehyde to phenol ratio on the curing and carbonisation behaviour of resole resins. Polymer, 2001, 42, 3355-3362.	1.8	39
117	Factors Influencing the Formation of Single-Chain Polymeric Nanoparticles Prepared via Ring-Opening Polymerization. Macromolecules, 2015, 48, 1371-1379.	2.2	39
118	Bacterial Redox Potential Powers Controlled Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 286-293.	6.6	39
119	Chemical Modification of Wheat Protein-Based Natural Polymers:  Grafting and Cross-Linking Reactions with Poly(ethylene oxide) Diglycidyl Ether and Ethyl Diamine. Biomacromolecules, 2007, 8, 2909-2915.	2.6	38
120	High frequency sonoATRP of 2-hydroxyethyl acrylate in an aqueous medium. Polymer Chemistry, 2018, 9, 2562-2568.	1.9	38
121	Sonochemically Initiated RAFT Polymerization in Organic Solvents. Macromolecules, 2019, 52, 185-195.	2.2	38
122	(Cyanovinyl)ketenes From Azafulvenones. An Apparent Retro-Wolff Rearrangement. Journal of the American Chemical Society, 1996, 118, 3852-3861.	6.6	37
123	Optimization of the sensitivity and stability of the PRESAGEâ,,¢ dosimeter using trihalomethane radical initiators. Radiation Physics and Chemistry, 2012, 81, 867-873.	1.4	37
124	Highly porous and mechanically robust polyester poly(ethylene glycol) sponges as implantable scaffolds. Acta Biomaterialia, 2014, 10, 2769-2780.	4.1	37
125	Monolayer Structure and Evaporation Resistance: A Molecular Dynamics Study of Octadecanol on Water. Journal of Physical Chemistry B, 2010, 114, 3869-3878.	1.2	36
126	Color-Switchable Polar Polymeric Materials. ACS Applied Materials & Interfaces, 2019, 11, 29268-29275.	4.0	36

#	Article	IF	CITATIONS
127	Heterogeneously Catalyzed Fenton-Reversible Addition–Fragmentation Chain Transfer Polymerization in the Presence of Air. Macromolecules, 2019, 52, 3278-3287.	2.2	36
128	Synthesis, Characterization, and Direct Observation of Star Microgels. Macromolecules, 2003, 36, 5650-5654.	2.2	35
129	Synthetic hydrogels 3. Solvent effects on poly(2-hydroxyethyl methacrylate) networks. Polymer, 2004, 45, 4017-4027.	1.8	34
130	Synthesis and characterization of star-like microgels by one-pot free radical polymerization. Polymer, 2005, 46, 6727-6735.	1.8	34
131	Highly Efficient and Versatile Formation of Biocompatible Star Polymers in Pure Water and Their Stimuli-Responsive Self-Assembly. Macromolecules, 2014, 47, 7869-7877.	2.2	34
132	Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes. Journal of Polymer Science Part A, 2014, 52, 3372-3382.	2.5	34
133	Regulating Color Activation Energy of Mechanophore-Linked Multinetwork Elastomers. Macromolecules, 2020, 53, 4090-4098.	2.2	34
134	The behaviour of honeycomb film formation from star polymers with various fluorine content. Polymer, 2013, 54, 4446-4454.	1.8	33
135	A novel solid state photocatalyst for living radical polymerization under UV irradiation. Scientific Reports, 2016, 6, 20779.	1.6	33
136	Insights into the mechanochromism of spiropyran elastomers. Polymer Chemistry, 2019, 10, 1650-1659.	1.9	33
137	Phototriggered, Metal-Free Continuous Assembly of Polymers for the Fabrication of Ultrathin Films. ACS Macro Letters, 2012, 1, 1020-1023.	2.3	32
138	Irreversible Spoilage Sensors for Protein-Based Food. ACS Sensors, 2020, 5, 2903-2908.	4.0	32
139	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
140	Model studies of the curing of resole phenol-formaldehyde resins Part 1. The behaviour of ortho quinone methide in a curing resin. Polymer, 2000, 41, 1973-1979.	1.8	31
141	Quantitative formation of core cross-linked star polymers via a one-pot two-step single electron transfer-living radical polymerization. Polymer Chemistry, 2013, 4, 4562.	1.9	31
142	Highâ€performance thin film composite membranes with wellâ€defined poly(dimethylsiloxane)â€ <i>b</i> â€poly(ethylene glycol) copolymer additives for CO ₂ separation. Journal of Polymer Science Part A, 2015, 53, 1500-1511.	2.5	31
143	The thickness dependence of Matrimid films in water vapor permeation. Chemical Engineering Journal, 2012, 209, 301-312.	6.6	30
144	Evaluation of ultra-sensitive leucomalachite dye derivatives for use in the PRESAGE® dosimeter. Radiation Physics and Chemistry, 2013, 85, 204-209.	1.4	30

#	Article	IF	CITATIONS
145	Peptide-Based Star Polymers: The Rising Star in Functional Polymers. Australian Journal of Chemistry, 2012, 65, 978.	0.5	29
146	(Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers. Advanced Functional Materials, 2013, 23, 5159-5166.	7.8	29
147	Synthetic hydrogels 2. Polymerization induced phase separation in acrylamide systems. Polymer, 2003, 44, 7335-7344.	1.8	28
148	Effect of ?glutaraldehyde? functionality on network formation in poly(vinyl alcohol) membranes. Journal of Applied Polymer Science, 2005, 96, 780-792.	1.3	28
149	Synthesis of a Star Polymer Library with a Diverse Range of Highly Functionalized Macromolecular Architectures. Macromolecules, 2011, 44, 3189-3202.	2.2	28
150	Poly(dicyclopentadiene)â€montmorillonite nanocomposite formation via simultaneous intergalleryâ€surface initiation and chain crosslinking using ROMP. Journal of Polymer Science Part A, 2012, 50, 89-97.	2.5	28
151	Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity. Polymer Chemistry, 2015, 6, 5003-5008.	1.9	28
152	Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model. ACS Macro Letters, 2015, 4, 1205-1209.	2.3	28
153	Synthesis of ultraâ€high molecular weight polymers by controlled production of initiating radicals. Journal of Polymer Science Part A, 2019, 57, 1922-1930.	2.5	28
154	Influence of Polymer Elasticity on the Formation of Non racking Honeycomb Films. Advanced Materials, 2012, 24, 4327-4330.	11.1	27
155	Blends of Fluorinated Additives with Highly Selective Thin-Film Composite Membranes to Increase CO ₂ Permeability for CO ₂ /N ₂ Gas Separation Applications. Industrial & Engineering Chemistry Research, 2016, 55, 8364-8372.	1.8	27
156	Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polymer Chemistry, 2017, 8, 5972-5981.	1.9	27
157	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	5.3	27
158	Temperature-Responsive Solid–Liquid Separations with Charged Block-Copolymers of Poly(<i>N</i> -isopropyl acryamide). Langmuir, 2012, 28, 905-913.	1.6	26
159	Stabilization of Peptideâ€Based Vesicles via in situ Oxygenâ€Mediated Cross‣inking. Macromolecular Bioscience, 2012, 12, 1220-1231.	2.1	26
160	Nano-scale clustering of integrin-binding ligands regulates endothelial cell adhesion, migration, and endothelialization rate: novel materials for small diameter vascular graft applications. Journal of Materials Chemistry B, 2017, 5, 5942-5953.	2.9	26
161	An alternative pathway for the hydrolysis of epoxy ester compounds. Polymer, 2006, 47, 8247-8252.	1.8	25
162	Wheat gluten-based renewable and biodegradable polymer materials with enhanced hydrophobicity by using epoxidized soybean oil as a modifier. Carbohydrate Research, 2010, 345, 2174-2182.	1.1	25

#	Article	IF	CITATIONS
163	Honeycomb Films from Perfluoropolyether-Based Star and Micelle Architectures. Australian Journal of Chemistry, 2012, 65, 1186.	0.5	25
164	Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs. Polymer Chemistry, 2015, 6, 35-43.	1.9	25
165	Surface Initiated Polymer Thin Films for the Area Selective Deposition and Etching of Metal Oxides. ACS Nano, 2020, 14, 4276-4288.	7.3	25
166	Synthetic hydrogels. 1. Effects of solvent on poly(acrylamide) networks. Polymer, 2003, 44, 6195-6203.	1.8	24
167	Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide). Chemistry of Materials, 2004, 16, 5650-5658.	3.2	24
168	Factors influencing the growth and topography of nanoscale films fabricated by ROMP-mediated continuous assembly of polymers. Polymer Chemistry, 2013, 4, 68-75.	1.9	24
169	Ring-Opening Metathesis Polymerization with the Second Generation Hoveyda–Grubbs Catalyst: An Efficient Approach toward High-Purity Functionalized Macrocyclic Oligo(cyclooctene)s. Journal of the American Chemical Society, 2013, 135, 5717-5725.	6.6	24
170	Peptide-Based Star Polymers as Potential siRNA Carriers. Australian Journal of Chemistry, 2014, 67, 592.	0.5	24
171	Fractionation of graphene oxide single nano-sheets in water-glycerol solutions using gradient centrifugation. Carbon, 2016, 103, 363-371.	5.4	24
172	Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry. International Journal of Radiation Oncology Biology Physics, 2012, 84, e549-e555.	0.4	23
173	Molecular Mechanism of Stabilization of Thin Films for Improved Water Evaporation Protection. Langmuir, 2013, 29, 14451-14459.	1.6	23
174	Amphiphilic core cross-linked star polymers as water-soluble, biocompatible and biodegradable unimolecular carriers for hydrophobic drugs. Polymer Chemistry, 2015, 6, 6475-6487.	1.9	23
175	Observed Photoenhancement of RAFT Polymerizations under Fume Hood Lighting. ACS Macro Letters, 2016, 5, 1287-1292.	2.3	23
176	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie, 2017, 129, 12470-12474.	1.6	23
177	Initiator efficiency in ATRP: the tosyl chloride/CuBr/PMDETA system. Polymer, 2005, 46, 2097-2104.	1.8	22
178	Admicellar polymerization of styrene with divinyl benzene on alumina particles: the synthesis of white reinforcing fillers. Journal of Materials Science, 2006, 41, 7474-7482.	1.7	22
179	Highly Efficient Synthesis of Low Polydispersity Core Crossâ€Linked Star Polymers by Ru atalyzed Living Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 456-461.	2.0	22
180	Surfactant-mediated formation of polymeric microlenses from interfacial microdroplets. Soft Matter, 2014, 10, 957-964.	1.2	22

#	Article	IF	CITATIONS
181	Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. Nanoscale, 2016, 8, 15589-15596.	2.8	22
182	Beyond RGD; nanoclusters of syndecan- and integrin-binding ligands synergistically enhance cell/material interactions. Biomaterials, 2018, 187, 81-92.	5.7	22
183	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738.	1.6	22
184	Reduced administration frequency for the treatment of fungal keratitis: a sustained natamycin release from a micellar solution. Expert Opinion on Drug Delivery, 2020, 17, 407-421.	2.4	22
185	Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters. Radiation Measurements, 2009, 44, 249-256.	0.7	21
186	Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds. Radiation Physics and Chemistry, 2012, 81, 1688-1695.	1.4	20
187	Shear Induced Alignment of Low Aspect Ratio Gold Nanorods in Newtonian Fluids. Journal of Physical Chemistry Letters, 2015, 6, 3815-3820.	2.1	20
188	Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. ACS Applied Materials & Interfaces, 2016, 8, 6219-6228.	4.0	20
189	Tuning the Properties of Polymer Capsules for Cellular Interactions. Bioconjugate Chemistry, 2017, 28, 1859-1866.	1.8	20
190	Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Crossâ€Linking Density. Macromolecular Materials and Engineering, 2017, 302, 1600199.	1.7	20
191	Controlled RAFT polymerization facilitated by a nanostructured enzyme mimic. Polymer Chemistry, 2018, 9, 4448-4454.	1.9	20
192	Coupling Hydrophilic Amine-Containing Molecules to the Backbone of Poly(ε-Caprolactone). Australian Journal of Chemistry, 2006, 59, 534.	0.5	19
193	Surface Chemistry and Rheology of Polysulfobetaine-Coated Silica. Langmuir, 2007, 23, 7587-7593.	1.6	19
194	Tunable, Quantitative Fentonâ€RAFT Polymerization via Metered Reagent Addition. Macromolecular Rapid Communications, 2018, 39, 1800179.	2.0	19
195	Immobilization and Intracellular Delivery of Structurally Nanoengineered Antimicrobial Peptide Polymers Using Polyphenolâ€Based Capsules. Advanced Functional Materials, 2022, 32, 2107341.	7.8	19
196	Characterization of the pore structure of aqueous three-dimensional polyacrylamide gels with a novel cross-linker. Electrophoresis, 2000, 21, 3843-3850.	1.3	18
197	A General Method for the Synthesis and Isolation of Well-Defined Core Cross-Linked Multistar Assemblies: A Route toward Enhanced pH-Responsive Polymers. Macromolecules, 2009, 42, 4622-4631.	2.2	18
198	Effect of Surfactant Architecture on the Properties of Polystyreneâ^'Montmorillonite Nanocomposites. Langmuir, 2010, 26, 9023-9031.	1.6	18

#	Article	IF	CITATIONS
199	The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel mineral flotation. Minerals Engineering, 2011, 24, 449-454.	1.8	18
200	Assembly of Nanostructured Films with Hydrophobic Subcompartments via Continuous Assembly of Polymers. Macromolecules, 2013, 46, 7789-7796.	2.2	18
201	Aptamer-Mediated Cancer Gene Therapy. Current Gene Therapy, 2015, 15, 109-119.	0.9	18
202	Functional and Wellâ€Defined <i>β</i> â€Sheetâ€Assembled Porous Spherical Shells by Surfaceâ€Guided Peptide Formation. Advanced Functional Materials, 2015, 25, 3147-3156.	7.8	18
203	Targeted Graphene Oxide Networks: Cytotoxicity and Synergy with Anticancer Agents. ACS Applied Materials & Interfaces, 2018, 10, 43523-43532.	4.0	18
204	Synthesis ofN-Confused Porphyrin Analogues by β-Azafulvenone Tetramerization. Journal of Organic Chemistry, 1996, 61, 8125-8131.	1.7	17
205	Graft copolymerization studies. III. Methyl methacrylate onto polypropylene and polyethylene terephthalate. Journal of Applied Polymer Science, 2002, 83, 898-915.	1.3	17
206	Addition of Biological Functionality to Poly(Îμ-caprolactone) Films. Biomacromolecules, 2007, 8, 2416-2421.	2.6	17
207	Synthesis and Characterization of Core Cross-Linked Star Clusters by Conventional Free-Radical Polymerization. Macromolecules, 2007, 40, 7819-7826.	2.2	17
208	Direct Observation of the Intergallery Expansion of Polystyrene–Montmorillonite Nanocomposites. Chemistry of Materials, 2011, 23, 2303-2311.	3.2	17
209	Rational design of monolayers for improved water evaporation mitigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 47-58.	2.3	17
210	Low-Fouling, Biospecific Films Prepared by the Continuous Assembly of Polymers. Biomacromolecules, 2013, 14, 2477-2483.	2.6	17
211	Fullerene peapod nanoparticles as an organic semiconductor–electrode interface layer. Chemical Communications, 2016, 52, 3356-3359.	2.2	17
212	Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture. Chemical Communications, 2017, 53, 6756-6759.	2.2	17
213	Mechanochromophoreâ€Linked Polymeric Materials with Visible Color Changes. Macromolecular Rapid Communications, 2022, 43, e2100866.	2.0	17
214	Synthesis of Buckminsterfullerene C60 functionalised core cross-linked star polymers. Polymer, 2008, 49, 825-830.	1.8	16
215	Assembly of Freeâ€Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Graftingâ€From Approach, and Crossâ€Chain Termination. Advanced Materials, 2013, 25, 4619-4624.	11.1	16
216	Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation. Macromolecules, 2016, 49, 788-795.	2.2	16

#	Article	IF	CITATIONS
217	DNA-Inspired Strand-Exchange for Switchable PMMA-Based Supramolecular Morphologies. Journal of the American Chemical Society, 2019, 141, 2630-2635.	6.6	16
218	3D nanoprinting via spatially controlled assembly and polymerization. Nature Communications, 2022, 13, 1941.	5.8	16
219	Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. Australian Journal of Chemistry, 2018, 71, 826.	0.5	15
220	Blood atalyzed RAFT Polymerization. Angewandte Chemie, 2018, 130, 10445-10449.	1.6	15
221	Growing Patterned, Cross-linked Nanoscale Polymer Films from Organic and Inorganic Surfaces Using Ring-Opening Metathesis Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 4041-4051.	4.0	15
222	Plasticization Suppression in Grafted Polyimideâ^'Epoxy Network Membranes. Industrial & Engineering Chemistry Research, 2007, 46, 8183-8192.	1.8	14
223	High-resolution measurements of small field beams using polymer gels. Applied Radiation and Isotopes, 2007, 65, 1160-1164.	0.7	14
224	Formation of Wheatâ€Proteinâ€Based Biomaterials through Polymer Grafting and Crosslinking Reactions to Introduce New Functional Properties. Macromolecular Bioscience, 2009, 9, 93-101.	2.1	14
225	A generic class of amyloid fibril inhibitors. Journal of Materials Chemistry B, 2015, 3, 1350-1359.	2.9	14
226	3-carbonyl-3H-indole: Direct observation and tetramerization to a tetrabenzoporphyrin analogue. Tetrahedron Letters, 1995, 36, 3913-3916.	0.7	13
227	Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers. Polymer, 2013, 54, 520-529.	1.8	13
228	Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions. Australian Journal of Chemistry, 2014, 67, 173.	0.5	13
229	Soft nanoparticles assembled from linear poly(ethylene glycol) and linear brush polydimethylsiloxane diblock copolymers. Journal of Polymer Science Part A, 2014, 52, 1251-1262.	2.5	13
230	Pd(0) loaded Zn ₂ (azoBDC) ₂ (dabco) as a heterogeneous catalyst. CrystEngComm, 2017, 19, 4182-4186.	1.3	13
231	Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers. ACS Applied Materials & Interfaces, 2022, 14, 25025-25041.	4.0	13
232	Autophobicity-Driven Surface Segregation and Patterning of Coreâ^'Shell Microgel Nanoparticles. Nano Letters, 2008, 8, 3010-3016.	4.5	12
233	Comb polymers: Are they the answer to monolayer stability?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 482-489.	2.3	12
234	Synthesis of Novel Core Crossâ€Linked Starâ€Based Polyrotaxane Endâ€Capped via "CuAAC―Click Chemis Macromolecular Rapid Communications, 2012, 33, 2109-2114.	stry _{2.0}	12

#	Article	IF	CITATIONS
235	Molecular Interactions behind the Synergistic Effect in Mixed Monolayers of 1-Octadecanol and Ethylene Glycol Monooctadecyl Ether. Journal of Physical Chemistry B, 2013, 117, 3603-3612.	1.2	12
236	Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers. Chemical Communications, 2015, 51, 2025-2028.	2.2	12
237	Precise control of drug loading and release of an NSAID–polymer conjugate for long term osteoarthritis intra-articular drug delivery. Journal of Materials Chemistry B, 2017, 5, 6221-6226.	2.9	12
238	Intra-articular Treatment of Osteoarthritis with Diclofenac-Conjugated Polymer Reduces Inflammation and Pain. ACS Applied Bio Materials, 2019, 2, 2822-2832.	2.3	12
239	Dewetting of Star Nanogel/Homopolymer Blends from an Immiscible Homopolymer Substrate. Macromolecules, 2004, 37, 7857-7860.	2.2	11
240	Continuous assembly of polymers via solid phase reactions. Chemical Science, 2014, 5, 3374-3380.	3.7	11
241	Redox-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. Australian Journal of Chemistry, 2019, 72, 479.	0.5	11
242	Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity. , 2020, 2, 993-998.		11
243	Determination of dosimetric perturbations caused by aneurysm clip in stereotactic radiosurgery using gel phantoms and EBT-Gafchromic films. Medical Physics, 2008, 35, 744-752.	1.6	10
244	Film-Stabilizing Attributes of Polymeric Core–Shell Nanoparticles. ACS Nano, 2015, 9, 7940-7949.	7.3	10
245	Effects of the Molecular Structure of a Self-Assembled Monolayer on the Formation and Morphology of Surface Nanodroplets. Langmuir, 2016, 32, 11197-11202.	1.6	10
246	Hydroxyl Radical Activated RAFT Polymerization. ACS Symposium Series, 2018, , 307-321.	0.5	10
247	A nontoxic reversible thermochromic binary system via π–π stacking of sulfonephthaleins. Journal of Materials Chemistry C, 2019, 7, 9335-9345.	2.7	10
248	Blue LED light-activated RAFT polymerization of PEG acrylate with high chain-end fidelity for efficient PEGylation. Polymer Chemistry, 2020, 11, 5238-5248.	1.9	10
249	From UV to NIR: A Full‧pectrum Metalâ€Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie, 2020, 132, 21576-21580.	1.6	10
250	3,5-Dimethylphenol resole resins: their structure and mechanism of thermal decomposition leading to graphitisation. Polymer, 2001, 42, 7523-7529.	1.8	9
251	Novel cross-linked homogeneous polyacrylamide gels with improved separation properties: Investigation of the cross-linker functionality. Electrophoresis, 2001, 22, 4303-4310.	1.3	9
252	Synthesis of highâ€order multiblock core crossâ€linked star polymers. Journal of Polymer Science Part A, 2016, 54, 135-143.	2.5	9

#	Article	IF	CITATIONS
253	Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017, 18, 2118-2127.	2.6	9
254	Hierarchical porous hybrid chitosan scaffolds with tailorable mechanical properties. Materials Letters, 2017, 209, 528-531.	1.3	9
255	1,1â€Diphenyl Ethyleneâ€Mediated Radical Polymerisation: A General Nonâ€Metalâ€Based Technique For The Synthesis Of Precise Core Crossâ€Linked Star Polymers. Macromolecular Rapid Communications, 2010, 31, 305-309.	2.0	8
256	Enantioselective Adsorption of Surfactants Monitored by ATR-FTIR. Langmuir, 2010, 26, 13944-13953.	1.6	8
257	On-Demand Cascade Release of Hydrophobic Chemotherapeutics from a Multicomponent Hydrogel System. ACS Biomaterials Science and Engineering, 2018, 4, 1696-1707.	2.6	8
258	Biocompatible Porous Polyester-Ether Hydrogel Scaffolds with Cross-Linker Mediated Biodegradation and Mechanical Properties for Tissue Augmentation. Polymers, 2018, 10, 179.	2.0	8
259	Accelerated Polypeptide Synthesis via <i>N</i> â€Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromolecular Rapid Communications, 2020, 41, e2000071.	2.0	8
260	Temporal control of RAFT polymerization via magnetic catalysis. Polymer Chemistry, 2020, 11, 2838-2846.	1.9	8
261	Approaches to the controlled formation of network polymers:. Polymer, 2000, 41, 27-34.	1.8	7
262	Delaying the onset of macrogelation for the synthesis of branched and star-like polymers via conventional free-radical polymerisation: Binary solvent effects and incorporation of surfmers. Polymer, 2008, 49, 5373-5386.	1.8	7
263	Formation of Dynamic Duolayer Systems at the Air/Water Interface by using Non-ionic Hydrophilic Polymers. Australian Journal of Chemistry, 2013, 66, 807.	0.5	7
264	Tailoring Substrate Hydrophilicity Using Grafted Polypeptide Nanocoatings. Australian Journal of Chemistry, 2014, 67, 598.	0.5	7
265	Flow-induced aggregation of colloidal particles in viscoelastic fluids. Physical Review E, 2016, 94, 022610.	0.8	7
266	Self-deoxygenating glassware. Chemical Communications, 2019, 55, 8544-8547.	2.2	7
267	Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Separation and Purification Technology, 2020, 246, 116893.	3.9	7
268	On the mechanism of background silver staining during sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis, 1999, 20, 2039-2045.	1.3	6
269	From well defined star-microgels to highly ordered honeycomb films. Journal of Materials Chemistry, 2005, , .	6.7	6
270	Conjugation of Bioactive Groups to Poly(lactic acid) and Poly[(lactic acid)â€ <i>co</i> â€(glycolic acid)] Films. Macromolecular Bioscience, 2007, 7, 1272-1279.	2.1	6

#	Article	IF	CITATIONS
271	An improved technique for concentration measurement of galactomannan solutions by differential refractive index. Carbohydrate Polymers, 2009, 77, 150-153.	5.1	6
272	Enthalpy and Volume Relaxation of Coreâ€Crosslinked Star Polystyrene/Poly(methyl methacrylate) Blends. Macromolecular Chemistry and Physics, 2011, 212, 1677-1691.	1.1	6
273	Thermal, Optical, and Static/Dynamic Mechanical Properties of Linearâ€core Crosslinked Star Polymer Blends. Macromolecular Chemistry and Physics, 2011, 212, 1778-1790.	1.1	6
274	Time-resolved yield stress measurement of evolving materials using a creeping sphere. Rheologica Acta, 2015, 54, 365-376.	1.1	6
275	Dynamic Performance of Duolayers at the Air/Water Interface. 2. Mechanistic Insights from All-Atom Simulations. Journal of Physical Chemistry B, 2014, 118, 10927-10933.	1.2	5
276	Fabrication of Chiral Stationary Phases via Continuous Assembly of Polymers for Resolution of Enantiomers by Liquid Chromatography. Macromolecular Materials and Engineering, 2014, 299, 1285-1291.	1.7	5
277	Spatial-controlled nanoengineered films prepared via rapid catalyst induced cross-linking. Polymer Chemistry, 2016, 7, 3251-3258.	1.9	5
278	Controlled Polymerization: Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	5
279	Photochemistry of pyridyl azides and diazo ketones in matrix and in solution. Pure and Applied Chemistry, 1997, 69, 847-850.	0.9	4
280	Synthesis, Characterization, and Modelling of Novel Multifunctional Acryloyl-Based Monomers: An Experimental and Computational Study. Australian Journal of Chemistry, 2002, 55, 675.	0.5	4
281	Dynamic Performance of Duolayers at the Air/Water Interface. 1. Experimental Analysis. Journal of Physical Chemistry B, 2014, 118, 10919-10926.	1.2	4
282	Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein. International Journal of Biological Macromolecules, 2020, 144, 742-750.	3.6	4
283	Biomaterials functionalized with nanoclusters of integrin―and syndecanâ€binding ligands improve cell adhesion and mechanosensing under shear flow conditions. Journal of Biomedical Materials Research - Part A, 2021, 109, 313-325.	2.1	4
284	Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules, 2021, 22, 2554-2562.	2.6	4
285	Plasma Corona Protects Human Immune Cells from Structurally Nanoengineered Antimicrobial Peptide Polymers. ACS Applied Materials & Interfaces, 2021, 13, 33821-33829.	4.0	4
286	Mimicry of silk utilizing synthetic polypeptides. Progress in Polymer Science, 2022, 130, 101557.	11.8	4
287	Synthetic Strategies towards Wellâ€Defined Complex Polymeric Architectures through Covalent Chemistry. Chemie-Ingenieur-Technik, 2014, 86, 2195-2214.	0.4	3
288	Highly Ordered Honeycomb Film Formation of Linear Polymers by the Breath Figure Technique. Australian Journal of Chemistry, 2016, 69, 1130.	0.5	3

#	Article	IF	CITATIONS
289	Crosslinked polypeptide films via RAFT mediated continuous assembly of polymers. Angewandte Chemie - International Edition, 2021, , e202112842.	7.2	3
290	PMMA Star-Like Polymers via One-Pot Conventional Free-Radical Copolymerization. Australian Journal of Chemistry, 2009, 62, 891.	0.5	2
291	Duolayers at the Air/Water Interface: Improved Lifetime through Ionic Interactions. Journal of Physical Chemistry B, 2016, 120, 7401-7407.	1.2	2
	Multivalent Ligands: Integrin Clustering Matters: A Review of Biomaterials Functionalized with		

Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation,

#	Article	IF	CITATIONS
307	In vivo studies of biocompatible PEG-based hydrogel scaffolds with biofactors. , 2014, , .		Ο
308	Frontiers in Sino-Australian Polymer Science and Engineering. Australian Journal of Chemistry, 2014, 67, 3.	0.5	0
309	Energy Barriers: Functional and Wellâ€Defined <i>β</i> â€Sheetâ€Assembled Porous Spherical Shells by Surfaceâ€Guided Peptide Formation (Adv. Funct. Mater. 21/2015). Advanced Functional Materials, 2015, 25, 3275-3275.	7.8	Ο
310	Alignment of Red Poly[dodecadyin-1,12-diol-bis(4-butoxycarbonyl-methyl-urethane)] in Couette Flow. Journal of Physical Chemistry B, 2016, 120, 9173-9179.	1.2	0
311	An Exciting Time for Polymer Chemists in Australia. Journal of Polymer Science Part A, 2019, 57, 1859-1861.	2.5	Ο
312	Frontispiece: Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry - A European Journal, 2019, 25, .	1.7	0
313	SUâ€FFâ€Tâ€188: Dosimetry of Microbeam Radiotherapy Using Gel Dosimeters. Medical Physics, 2007, 34, 2444-2444.	1.6	Ο
314	Photonuclear activation of oxygen & copper with high-energy x-ray or electron beams. , 2007, , 2126-2129.		0
315	Vernetzte Polypeptide durch RAFTâ€vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angewandte Chemie, 0, , .	1.6	Ο