Hieronim Maciejewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gelatin–Siloxane Hybrid Monoliths as Novel Heavy Metal Adsorbents. Applied Sciences (Switzerland), 2022, 12, 1258.	1.3	5
2	Thiol-ene chemistry as an effective tool for hydrophobization of cotton fabrics. Cellulose, 2022, 29, 1231-1247.	2.4	7
3	Inorganometallics (Transition Metal–Metalloid Complexes) and Catalysis. Chemical Reviews, 2022, 122, 3996-4090.	23.0	36
4	Multifunctional Cotton Fabrics Obtained by Modification with Silanes Containing Esters of Phosphoric Acid as Substituents. Materials, 2021, 14, 1542.	1.3	9
5	Ionic Liquids in Catalysis. Catalysts, 2021, 11, 367.	1.6	16
6	Structure and Oligonucleotide Binding Efficiency of Differently Prepared Click Chemistry-Type DNA Microarray Slides Based on 3-Azidopropyltrimethoxysilane. Materials, 2021, 14, 2855.	1.3	0
7	Synthesis, characterization and catalytic activity of new SILPs based on MgO-SiO2 and MgO-SiO2/lignin supports. Molecular Catalysis, 2021, 509, 111615.	1.0	3
8	Mono N-Alkylated DABCO-Based Ionic Liquids and Their Application as Latent Curing Agents for Epoxy Resins. ACS Applied Polymer Materials, 2021, 3, 5481-5493.	2.0	7
9	SILP materials based on TiO ₂ –SiO ₂ and TiO ₂ –SiO ₂ /lignin supports as new catalytic materials for hydrosilylation reaction – synthesis, physicochemical characterization and catalysis. RSC Advances, 2021, 11, 23355-23364.	1.7	4
10	Durable, highly hydrophobic modification of cotton fabric with fluorine-free polysiloxanes obtained via hydrosilylation and hydrothiolation reactions. Cellulose, 2020, 27, 8351-8367.	2.4	16
11	Heterogeneous Catalysis with the Participation of Ionic Liquids. Catalysts, 2020, 10, 1227.	1.6	43
12	Piperidinium and Pyrrolidinium Ionic Liquids as Precursors in the Synthesis of New Platinum Catalysts for Hydrosilylation. Catalysts, 2020, 10, 919.	1.6	9
13	SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts, 2020, 10, 1414.	1.6	4
14	The Rapeseed Oil Based Organofunctional Silane for Stainless Steel Protective Coatings. Materials, 2020, 13, 2212.	1.3	5
15	Synthesis and characterization of nitrogen-based ionic liquids bearing allyl groups and examples of their application. New Journal of Chemistry, 2020, 44, 12274-12288.	1.4	8
16	Highly Efficient and Reusable Alkyne Hydrosilylation Catalysts Based on Rhodium Complexes Ligated by Imidazolium-Substituted Phosphine. Catalysts, 2020, 10, 608.	1.6	9
17	Organosilicons of different molecular size and chemical structure as consolidants for waterlogged archaeological wood – a new reversible and retreatable method. Scientific Reports, 2020, 10, 2188.	1.6	29
18	Versatile Method for the Simultaneous Synthesis of Two Ionic Liquids, Otherwise Difficult to Obtain, with High Atom Economy. ChemistryOpen, 2019, 8, 972-983.	0.9	8

HIERONIM MACIEJEWSKI

#	Article	IF	CITATIONS
19	Wood protective coatings based on fluorocarbosilane. Cellulose, 2019, 26, 9853-9861.	2.4	10
20	Platinum and rhodium complexes ligated by imidazolium-substituted phosphine as efficient and recyclable catalysts for hydrosilylation. RSC Advances, 2019, 9, 29396-29404.	1.7	14
21	Transition metal-catalyzed hydrosilylation of polybutadiene – The effect of substituents at silicon on efficiency of silylfunctionalization process. Journal of Catalysis, 2019, 371, 27-34.	3.1	16
22	Highly Effective Supported Ionic Liquid-Phase (SILP) Catalysts: Characterization and Application to the Hydrosilylation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4699-4706.	3.2	39
23	New anionic rhodium complexes as catalysts for the reduction of acetophenone and its derivatives. RSC Advances, 2019, 9, 711-720.	1.7	7
24	Highly efficient hydrosilylation catalysts based on chloroplatinate "ionic liquids― Journal of Catalysis, 2019, 374, 266-275.	3.1	11
25	Antimicrobial activity of organic–inorganic hybrid films based on gelatin and organomodified silicones. Advances in Polymer Technology, 2018, 37, 2958-2970.	0.8	4
26	Development of multifunctional cotton fabrics using difunctional polysiloxanes. Cellulose, 2018, 25, 1483-1497.	2.4	21
27	Preparation and characterisation of monolayers and Langmuir–Blodgett films of liquid crystal mixed with cubic silsesquioxanes. Liquid Crystals, 2018, 45, 351-361.	0.9	5
28	An Effective Catalytic Hydroboration of Alkynes in Supercritical CO ₂ under Repetitive Batch Mode. ChemCatChem, 2018, 10, 531-539.	1.8	19
29	Synthesis and flame retardant efficacy of hexakis(3-(triethoxysilyl)propyloxy)cyclotriphosphazene/silica coatings for cotton fabrics. Polymer Degradation and Stability, 2018, 148, 10-18.	2.7	38
30	Silica Surface Modification and Its Application in Permanent Link with Nucleic Acids. ACS Omega, 2018, 3, 5931-5937.	1.6	5
31	The effect of the morpholinium ionic liquid anion on the catalytic activity of Rh (or Pt) complex–ionic liquid systems in hydrosilylation processes. RSC Advances, 2018, 8, 26922-26927.	1.7	10
32	Corrosion-protective coatings based on fluorocarbosilane. Progress in Organic Coatings, 2018, 123, 374-383.	1.9	9
33	Recyclable Hydroboration of Alkynes Using RuH@IL and RuH@IL/scCO ₂ Catalytic Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 10980-10988.	3.2	19
34	Optimization and intensification of hydrosilylation reactions using a microreactor system. New Journal of Chemistry, 2018, 42, 15332-15339.	1.4	7
35	A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials. New Journal of Chemistry, 2018, 42, 15552-15555	1.4	9
36	Synthesis and characterization of new (dimethylsilyl)phenoxy and (dimethyl(vinyl)silyl)phenoxy substituted cyclotriphosphazenes. Journal of Organometallic Chemistry, 2017, 853, 64-67.	0.8	13

#	Article	IF	CITATIONS
37	The effect of epoxyurethane modification on surface and thermal properties of fluorinated epoxyfunctional siloxane high—solid coatings. Progress in Organic Coatings, 2017, 112, 118-126.	1.9	6
38	An efficient catalytic and solvent-free method for the synthesis of mono-organofunctionalized 1,1,3,3-tetramethyldisiloxane derivatives. Journal of Organometallic Chemistry, 2017, 846, 263-268.	0.8	22
39	An Efficient Catalytic Route for the Synthesis of Silane Coupling Agents Based on the 1,1,3,3â€Tetramethyldisiloxane Core. European Journal of Inorganic Chemistry, 2017, 2017, 851-856.	1.0	19
40	Hydrosilylation of Carbon–Carbon Multiple Bonds—Application in Synthesis and Materials Science. , 2017, , 169-217.		10
41	Amino-functional Silsesquioxanes (POSS)-Effective Glass Surface Modifiers in Solidphase Nucleic Acid Synthesis. Current Organic Chemistry, 2017, 21, .	0.9	3
42	Candida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS® Compounds: Useful Tool for Rapeseed Oil Conversion. International Journal of Molecular Sciences, 2016, 17, 1581.	1.8	13
43	Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction. Molecules, 2016, 21, 1115.	1.7	27
44	Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose, 2016, 23, 2185-2197.	2.4	74
45	Synthesis of an Openâ€Cage Structure POSS Containing Various Functional Groups and Their Effect on the Formation and Properties of Langmuir Monolayers. Chemistry - A European Journal, 2016, 22, 13275-13286.	1.7	23
46	Multifunctional durable properties of textile materials modified by biocidal agents in the sol-gel process. Surface and Coatings Technology, 2016, 304, 160-166.	2.2	24
47	Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process. Applied Surface Science, 2016, 387, 163-174.	3.1	33
48	Thermal and surface properties of hybrid materials obtained from epoxy-functional urethane and siloxane. Polymer Bulletin, 2016, 73, 1247-1265.	1.7	7
49	Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicon compounds. Polymer Degradation and Stability, 2016, 128, 55-64.	2.7	57
50	Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2016, 140, 135-141.	2.5	11
51	Novel organosilicon dendrons as effective linkers for biomolecules binding on a glass surface. Applied Organometallic Chemistry, 2015, 29, 216-220.	1.7	3
52	Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization. Marine Drugs, 2015, 13, 2424-2446.	2.2	70
53	Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 110-120.	2.3	24
54	Hydrophobic Materials Based on Fluorocarbofunctional Spherosilicates. Silicon, 2015, 7, 201-209.	1.8	33

#	Article	IF	CITATIONS
55	Solvothermal synthesis of hydrophobic chitin–polyhedral oligomeric silsesquioxane (POSS) nanocomposites. International Journal of Biological Macromolecules, 2015, 78, 224-229.	3.6	37
56	A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. Journal of Thermal Analysis and Calorimetry, 2015, 122, 215-226.	2.0	19
57	Synthesis and properties of high-solids hybrid materials obtained from epoxy functional urethanes and siloxanes. Progress in Organic Coatings, 2015, 84, 59-69.	1.9	22
58	Synergistic Effect of Modified Natural Fibres with Halogen-Free Fire Retardants in Reducing Flammability of Composites. Journal of Biobased Materials and Bioenergy, 2015, 9, 115-127.	0.1	9
59	A study on thermal stability of glycidylsiloxane resins cured with aliphatic amines. Polimery, 2015, 60, 448-456.	0.4	Ο
60	Functionalization of spherosilicates via hydrosilylation catalyzed by well-defined rhodium siloxide complexes immobilized on silica. Journal of Molecular Catalysis A, 2014, 391, 150-157.	4.8	17
61	Interfacial Properties of Fully Condensed Functional Silsesquioxane: A Langmuir Monolayer Study. Journal of Physical Chemistry C, 2014, 118, 24548-24555.	1.5	21
62	Synthesis and properties of polysiloxanes containing mixed functional groups. Reactive and Functional Polymers, 2014, 83, 144-154.	2.0	18
63	Thermal degradation studies of poly(urethane–siloxane) thermosets based on co-poly(dimethyl)(methyl, hydroxypolyoxyethylenepropyl) siloxane. Thermochimica Acta, 2014, 589, 252-261.	1.2	16
64	Synthesis, Characterization, and Thermal Properties of Organic–Inorganic Hybrids Based on Gelatin and Organomodified Silicones. Advances in Polymer Technology, 2014, 33, .	0.8	11
65	Research paper Application of epoxy functional silanes in the preparation of DNA microarrays. Biotechnologia, 2014, 1, 5-16.	0.3	3
66	Silane-modified surfaces in specific antibody-mediated cell recognition. Folia Histochemica Et Cytobiologica, 2014, 52, 250-255.	0.6	11
67	Alkyl- and fluoroalkyltrialkoxysilanes for wettability modification. Applied Surface Science, 2013, 283, 453-459.	3.1	13
68	Diallyldimethylammonium and trimethylvinylammonium ionic liquids—Synthesis and application to catalysis. Applied Catalysis A: General, 2013, 451, 168-175.	2.2	22
69	Thermal degradation kinetics of semi-interpenetrating polymer network based on polyurethane and siloxane. Thermochimica Acta, 2013, 560, 55-62.	1.2	21
70	Immobilization of biomolecules via ruthenium-catalyzed functionalization of the surface of silica with a vinylsilane. Tetrahedron Letters, 2013, 54, 3605-3608.	0.7	12
71	Fluoroalkylsilane versus Alkylsilane as Hydrophobic Agents for Silica and Silicates. Journal of Nanomaterials, 2013, 2013, 1-13.	1.5	21
72	Curing of epoxy resin epidian 6 containing reactive organosilicon filler — a differential scanning calorimetry study. Polimery, 2013, 58, 212-218.	0.4	2

HIERONIM MACIEJEWSKI

#	Article	IF	CITATIONS
73	Synthesis and characterization of silsesquioxanes with structure of incompletely condensed cages. Polimery, 2013, 58, 741-747.	0.4	2
74	Preparation of functionalised SiO2/F-SF poss hybrid fillers and their application in gel polymer electrolytes. Polimery, 2013, 58, 748-758.	0.4	4
75	Application of silsesquioxanes for modification of epoxy resins. Polimery, 2013, 58, 759-765.	0.4	3
76	Synthesis of reactive siloxane-silsesquioxane resins. Polimery, 2013, 58, 766-771.	0.4	6
77	POSS compounds as modifiers and additives for elastomeric composites. Polimery, 2013, 58, 772-782.	0.4	7
78	Synthesis of Azido-, Hydroxy- and Nitro-, Hydroxy-Functionalized Spherosilicates via Oxirane Ring-Opening Reactions. Synthesis, 2012, 44, 881-884.	1.2	8
79	Thermal stability of hybrid materials based on epoxy functional (poly)siloxanes. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1415-1424.	2.0	17
80	Efficient synthesis of E-1,2-bis(silyl)ethenes via ruthenium-catalyzed homocoupling of vinylsilanes carried out in ionic liquids. Applied Catalysis A: General, 2012, 445-446, 261-268.	2.2	8
81	Application of click chemistry to the production of DNA microarrays. Lab on A Chip, 2012, 12, 1151.	3.1	29
82	New approach to synthesis of functionalised silsesquioxanes via hydrosilylation. Catalysis Communications, 2012, 24, 1-4.	1.6	21
83	Epoxy resins modified with reactive low molecular weight siloxanes. European Polymer Journal, 2012, 48, 769-773.	2.6	54
84	Effective synthesis of fluorofunctional (poly)siloxanes. Polimery, 2012, 57, 449-455.	0.4	9
85	Polyamide 6 modified with silsesquioxane prepared via anionic polymerization of e-caprolactam. Polimery, 2012, 57, 697-704.	0.4	2
86	New Fluorocarbofunctional Spherosilicates: Synthesis and Characterization. Organometallics, 2011, 30, 2149-2153.	1.1	39
87	Hydrosilylation of n-alkenes and allyl chloride over platinum supported on styrene–divinylbenzene copolymer. Catalysis Today, 2011, 169, 69-74.	2.2	18
88	Pyrylium sulfonate based ionic liquids. Tetrahedron Letters, 2011, 52, 4342-4345.	0.7	20
89	Anisotropic Epoxy Networks. Macromolecular Symposia, 2010, 291-292, 127-136.	0.4	8
90	Functionalization of Polyhedral Oligomeric Silsesquioxane (POSS) via Nucleophilic Substitution. Synthesis, 2009, 2009, 2019-2024.	1.2	17

HIERONIM MACIEJEWSKI

#	Article	IF	CITATIONS
91	A new method for the synthesis of mixed orthoesters from O-allyl acetals. Tetrahedron Letters, 2009, 50, 1193-1195.	0.7	10
92	Catalysis of Hydrosilylation by Wellâ€Ðefined Surface Rhodium Siloxide Phosphine Complexes. ChemCatChem, 2009, 1, 304-310.	1.8	22
93	Hydrosilylation of functionalised olefins catalysed by rhodium siloxide complexes in ionic liquids. Green Chemistry, 2009, 11, 1045.	4.6	42
94	New type of repeated Si–C-podand catalysts for solid–liquid phase transfer reactions. Catalysis Communications, 2008, 9, 821-825.	1.6	10
95	New, Effective Method of Synthesis and Structural Characterization of Octakis(3-chloropropyl)octasilsesquioxane. Organometallics, 2008, 27, 793-794.	1.1	74
96	Intermediates in nickel(0)–phosphine complex catalyzed dehydrogenative silylation of olefins. Inorganica Chimica Acta, 2006, 359, 2989-2997.	1.2	18
97	Modification of (Poly)Siloxanes via Hydrosilylation Catalyzed by Rhodium Complex in Ionic Liquids. Monatshefte Für Chemie, 2006, 137, 605-611.	0.9	24
98	Silicone waxes—synthesis via hydrosilylation in homo- and heterogeneous systems. Journal of Molecular Catalysis A, 2006, 257, 141-148.	4.8	43
99	Synthesis of phenylene–silylene–ethylene polymers via transition metal complex catalyzed hydrosilylation polymerization. Applied Organometallic Chemistry, 2005, 19, 49-54.	1.7	25
100	Catalytic reactions of hydrosiloxanes with allyl chloride. Journal of Organometallic Chemistry, 2005, 690, 4478-4487.	0.8	15
101	The synthesis and characterisation of some nickel(0) complexes with π-bounded vinylsilicon ligands; the molecular structure of [Ni{P(C6H5)3}2{η2-CH2CHSi(CH3)3}]. Journal of Organometallic Chemistry, 2004, 689, 3075-3081.	0.8	10
102	Kinetics and mechanism of the reaction of allyl chloride with trichlorosilane catalyzed by carbon-supported platinum. Applied Organometallic Chemistry, 2003, 17, 127-134.	1.7	26
103	Synthesis and structure of the dinuclear chloro-rhodium π-complexes with vinylsilanes. Inorganica Chimica Acta, 2003, 350, 603-608.	1.2	8
104	Synthesis and characterisation of bis(amino)silylene–nickel(0), –palladium(II), –platinum(0), –platinum(II) and copper(I) complexes. Journal of Organometallic Chemistry, 2003, 686, 321-331.	0.8	100
105	Phosphine nickel(0) π-complexes with vinylcyclosilazane—synthesis and structure. Polyhedron, 2002, 21, 1261-1265.	1.0	8
106	From isothiocyanato– to silyl–nickel complexes. Inorganic Chemistry Communication, 2002, 5, 464-467.	1.8	7
107	Synthesis of organofunctional silanes with sterically hindered substituents at silicon atoms. Applied Organometallic Chemistry, 2001, 15, 649-657.	1.7	7
108	Transition metal-siloxide complexes; synthesis, structure and application to catalysis. Coordination Chemistry Reviews, 2001, 223, 301-335.	9.5	105

#	Article	IF	CITATIONS
109	Catalysis of hydrosilylation. Journal of Organometallic Chemistry, 2000, 597, 175-181.	0.8	51
110	A convenient route to vinylsiloxane-tertiary phosphine-nickel(0) complexes; the molecular structure of [(Ni{P(C6H4Me-4)3})2{μ-(L′′L′′)2}] {(L′′L′′)2=[CH2ĩ`CH(Me)Si(μ-O)]4}. Journal o 2000, 605, 221-225.	f Organor	ne ta llic Chem
111	Dehydrogenative coupling of styrene with trisubstituted silanes catalyzed by nickel complexes1Part XXXII in the series `Catalysis of Hydrosilylation', for Part XXXI see Ref. [1].1. Journal of Molecular Catalysis A, 1998, 135, 223-231.	4.8	20
112	Silylenenickel(0) or Silyl(silylene)platinum(II) Complexes by Reaction of Si[(NCH2But)2C6H4-1,2] with [NiCl2(PPh3)2], [Ni(cod)2], or [PtCl2(PPh3)2]. Organometallics, 1998, 17, 5599-5601.	1.1	135
113	Catalysis of hydrosilylation: Part XXXI. Functionalization of poly(methylhydro)siloxanes via hydrosilylation of allyl derivatives. Applied Organometallic Chemistry, 1997, 11, 843-849.	1.7	30
114	Competitive dehydrogenative silylation and hydrogenative dimerization of vinyltriethoxysilane catalyzed by the [Ni(acac)2] + PPh3 system, intermediate and mechanistic implications. Journal of Organometallic Chemistry, 1996, 521, 245-251.	0.8	10
115	Stereoelectronic effects of substituents at silicon on the hydrosilylation of 1-hexene catalysed by [RhCl(cod)(1-hexene)]. Transition Metal Chemistry, 1995, 20, 435-439.	0.7	6
116	The reaction of [Ni(acac)2] with triethoxysilane in the presence of PPh3: a new method for synthesis of [Ni(acac)Et(PPh3)]. Journal of the Chemical Society Chemical Communications, 1995, , 717-718.	2.0	6
117	Metathesis of vinylsubstituted silanes in the presence of ruthenium complexes. Journal of Molecular Catalysis, 1994, 90, 213-224.	1.2	26
118	Catalysis of hydrosilylation Part XXV. Effect of nickel(O) and nickel(II) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane. Journal of Organometallic Chemistry, 1994, 484, 147-151.	0.8	19
119	Catalysis of hydrosilylation. Journal of Organometallic Chemistry, 1993, 454, 45-50.	0.8	23
120	Catalysis of hydrosilylation. Journal of Organometallic Chemistry, 1991, 418, 61-67.	0.8	25
121	Metathesis of silicon containing olefins. Journal of Organometallic Chemistry, 1989, 362, 273-279.	0.8	52
122	Isocyanatopropyltrimethoxysilane— Key Intermediate of New Silane Coupling Agents. , 0, , 536-540.		0
123	Polycarbosilanes as Precursors of Novel Membrane Materials. , 0, , 641-644.		0
124	Isocyanatopropyltrimethoxysilane— Key Intermediate of New Silane Coupling Agents. , 0, , 536-540.		0