Timothy Van Reeth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507989/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interior rotation of a sample of <i>Ĵ³</i> Doradus stars from ensemble modelling of their gravity-mode period spacings. Astronomy and Astrophysics, 2016, 593, A120.	2.1	155
2	GRAVITY-MODE PERIOD SPACINGS AS A SEISMIC DIAGNOSTIC FOR A SAMPLE OF <i>γ</i> DORADUS STARS FROM <i>KEPLER</i> SPACE PHOTOMETRY AND HIGH-RESOLUTION GROUND-BASED SPECTROSCOPY. Astrophysical Journal, Supplement Series, 2015, 218, 27.	3.0	115
3	Signatures of internal rotation discovered in the <i>Kepler</i> data of five slowly pulsating B stars. Astronomy and Astrophysics, 2017, 598, A74.	2.1	111
4	<i>Gaia</i> -derived luminosities of <i>Kepler</i> A/F stars and the pulsator fraction across the δ Scuti instability strip. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2380-2400.	1.6	102
5	Sensitivity of gravito-inertial modes to differential rotation in intermediate-mass main-sequence stars. Astronomy and Astrophysics, 2018, 618, A24.	2.1	82
6	Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection. Astrophysical Journal, Supplement Series, 2018, 237, 15.	3.0	69
7	Detecting non-uniform period spacings in the <i>Kepler</i> photometry of <i>î³</i> Doradus stars: methodology and case studies. Astronomy and Astrophysics, 2015, 574, A17.	2.1	66
8	Forward seismic modeling of the pulsating magnetic B-type star HD 43317. Astronomy and Astrophysics, 2018, 616, A148.	2.1	66
9	Photometric detection of internal gravity waves in upper main-sequence stars. Astronomy and Astrophysics, 2019, 621, A135.	2.1	63
10	The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations. Astrophysical Journal Letters, 2017, 847, L7.	3.0	60
11	Asteroseismic masses, ages, and core properties of Î ³ ÂDoradus stars using gravito-inertial dipole modes and spectroscopy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3248-3263.	1.6	59
12	ASTEROSEISMIC FINGERPRINTS OF ROTATION AND MIXING IN THE SLOWLY PULSATING B8 V STAR KIC 7760680. Astrophysical Journal Letters, 2015, 803, L25.	3.0	55
13	KIC 10080943: An eccentric binary system containing two pressure- and gravity-mode hybrid pulsators. Astronomy and Astrophysics, 2015, 584, A35.	2.1	49
14	Period spacings of γ Doradus pulsators in the Kepler field: Rossby and gravity modes in 82 stars. Monthly Notices of the Royal Astronomical Society, 2019, 487, 782-800.	1.6	47
15	Period spacings of γ Doradus pulsators in the <i>Kepler</i> field: detection methods and application to 22 slow rotators. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1757-1785.	1.6	41
16	Denoising spectroscopic data by means of the improved least-squares deconvolution method. Astronomy and Astrophysics, 2013, 560, A37.	2.1	41
17	Gravity-mode period spacings and near-core rotation rates of 611 \hat{I}^3 Doradus stars with Kepler. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	40
18	Rotation of the convective core in \hat{I}^3 Dor stars measured by dips in period spacings of g modes coupled with inertial modes. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5856-5874	1.6	40

Τιμοτην Van Reeth

#	Article	IF	CITATIONS
19	The period–luminosity relation for δÂScuti stars using Gaia DR2 parallaxes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4348-4353.	1.6	39
20	Detecting axisymmetric magnetic fields using gravity modes in intermediate-mass stars. Astronomy and Astrophysics, 2020, 638, A149.	2.1	30
21	Asteroseismic Modeling of Gravity Modes in Slowly Rotating A/F Stars with Radiative Levitation. Astrophysical Journal, 2020, 895, 51.	1.6	28
22	Constraining stellar evolution theory with asteroseismology of <i>γ</i> Doradus stars using deep learning. Astronomy and Astrophysics, 2021, 650, A58.	2.1	28
23	Asteroseismic inference of the near-core magnetic field strength in the main-sequence B star HDÂ43317. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 512, L16-L20.	1.2	21
24	HD 41641: A classical <i>l´</i> Sct-type pulsator with chemical signatures of an Ap star. Astronomy and Astrophysics, 2016, 588, A71.	2.1	18
25	Detection of magnetic fields in chemically peculiar stars observed with the K2 space mission. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2777-2793.	1.6	17
26	The effect of the centrifugal acceleration on period spacings of gravito-inertial modes in intermediate-mass stars. Astronomy and Astrophysics, 2021, 648, A97.	2.1	16
27	Detection of non-linear resonances among gravity modes of slowly pulsating B stars: Results from five iterative pre-whitening strategies. Astronomy and Astrophysics, 2021, 655, A59.	2.1	16
28	The HERMES solar atlas and the spectroscopic analysis of the seismic solar analogue KIC 3241581. Astronomy and Astrophysics, 2016, 589, A27.	2.1	15
29	Discovery of binarity, spectroscopic frequency analysis, and mode identification of the <i>δ</i> Scuti star 4 CVn. Astronomy and Astrophysics, 2014, 570, A33.	2.1	14
30	The traditional approximation of rotation for rapidly rotating stars and planets. Astronomy and Astrophysics, 2021, 652, A154.	2.1	14
31	Constraining the near-core rotation of thel ³ Doradus star 43 Cygni using BRITE-Constellation data. Astronomy and Astrophysics, 2017, 608, A103.	2.1	12
32	The traditional approximation of rotation for rapidly rotating stars and planets. II. Deformation and differential rotation. Astronomy and Astrophysics, 0, , .	2.1	11
33	The CubeSpec space mission. Astronomy and Astrophysics, 2022, 658, A96.	2.1	11
34	Predictions for Gravity-mode Periods and Surface Abundances in Intermediate-mass Dwarfs from Shear Mixing and Radiative Levitation. Astrophysical Journal, 2022, 925, 154.	1.6	11
35	Detection of period-spacing patterns due to the gravity modes of rotating dwarfs in the TESS southern continuous viewing zone. Astronomy and Astrophysics, 2022, 662, A82.	2.1	11
36	Detecting deep axisymmetric toroidal magnetic fields in stars. Astronomy and Astrophysics, 2022, 661, A133.	2.1	10

TIMOTHY VAN REETH

#	Article	IF	CITATIONS
37	Classifying <i>Kepler</i> light curves for 12 000 A and F stars using supervised feature-based machine learning. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2793-2804.	1.6	10
38	TESS Data for Asteroseismology: Light-curve Systematics Correction. Astrophysical Journal, Supplement Series, 2021, 257, 53.	3.0	9
39	The Kepler Smear Campaign: Light Curves for 102 Very Bright Stars. Astrophysical Journal, Supplement Series, 2019, 244, 18.	3.0	7
40	V456 Cyg: An eclipsing binary with tidally perturbed <i>g</i> -mode pulsations. Astronomy and Astrophysics, 2022, 659, A177.	2.1	6
41	The near-core rotation of HD 112429. Astronomy and Astrophysics, 2022, 662, A58.	2.1	3
42	Least-Squares Deconvolution based analysis of stellar spectra. EAS Publications Series, 2013, 64, 237-244.	0.3	1
43	Stellar evolution in motion: Period spacings inl ³ Doradus stars. EPJ Web of Conferences, 2015, 101, 06065.	0.1	0
44	Measuring and Decoding Gravito-Inertial Modes in Intermediate- and High-Mass Stars. Proceedings of the International Astronomical Union, 2017, 14, 98-103.	0.0	0