E Gerhart H Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507927/publications.pdf

Version: 2024-02-01

49 papers

4,921 citations

32 h-index 205818 48 g-index

52 all docs 52 docs citations

times ranked

52

3675 citing authors

#	Article	IF	CITATIONS
1	Small RNAs in Bacteria and Archaea. Advances in Genetics, 2015, 90, 133-208.	0.8	462
2	Antisense RNA Control in Bacteria, Phages, and Plasmids. Annual Review of Microbiology, 1994, 48, 713-742.	2.9	427
3	RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Research, 2003, 31, 6435-6443.	6.5	388
4	Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes and Development, 2005, 19, 2355-2366.	2.7	271
5	The Small RNA IstR Inhibits Synthesis of an SOS-Induced Toxic Peptide. Current Biology, 2004, 14, 2271-2276.	1.8	241
6	An Antisense RNA Inhibits Translation by Competing with Standby Ribosomes. Molecular Cell, 2007, 26, 381-392.	4.5	224
7	Hâ€NSâ€mediated repression of CRISPRâ€based immunity in <i>Escherichia coli</i> K12 can be relieved by the transcription activator LeuO. Molecular Microbiology, 2010, 77, 1380-1393.	1.2	220
8	RNA antitoxins. Current Opinion in Microbiology, 2007, 10, 117-124.	2.3	216
9	12 Antisense RNAs in bacteria and their genetic elements. Advances in Genetics, 2002, 46, 361-398.	0.8	213
10	The role of RNAs in the regulation of virulence-gene expression. Current Opinion in Microbiology, 2006, 9, 229-236.	2.3	174
11	Target identification of small noncoding RNAs in bacteria. Current Opinion in Microbiology, 2007, 10, 262-270.	2.3	165
12	A small SOSâ€induced toxin is targeted against the inner membrane in ⟨i⟩Escherichia coli⟨/i⟩. Molecular Microbiology, 2008, 70, 258-270.	1.2	161
13	RNAs actively cycle on the Sm-like protein Hfq. Genes and Development, 2010, 24, 2621-2626.	2.7	143
14	Impact of bacterial sRNAs in stress responses. Biochemical Society Transactions, 2017, 45, 1203-1212.	1.6	133
15	Cycling of RNAs on Hfq. RNA Biology, 2013, 10, 619-626.	1.5	103
16	Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Research, 2007, 35, 1279-1288.	6.5	101
17	PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of CoIE1-related plasmids. Molecular Microbiology, 1993, 9, 1131-1142.	1.2	93
18	Antisense RNAs everywhere?. Trends in Genetics, 2002, 18, 223-226.	2.9	91

#	Article	IF	CITATIONS
19	Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Molecular Microbiology, 2002, 35, 1469-1482.	1.2	74
20	Lead(II) as a probe for investigating RNA structure in vivo. Rna, 2002, 8, 534-541.	1.6	70
21	A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp. Molecular Microbiology, 2012, 84, 414-427.	1.2	70
22	Two regulatory <scp>RNA</scp> elements affect <scp>T</scp> is <scp>B</scp> â€dependent depolarization and persister formation. Molecular Microbiology, 2017, 103, 1020-1033.	1.2	69
23	An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. Rna, 2000, 6, 311-324.	1.6	66
24	Differential Translation Tunes Uneven Production of Operon-Encoded Proteins. Cell Reports, 2013, 4, 938-944.	2.9	64
25	Regulation of plasmid R1 replication: PcnB and RNase E expedite the decay of the antisense RNA, CopA. Molecular Microbiology, 1997, 26, 493-504.	1.2	59
26	Structural and functional analyses of the FinP antisense RNA regulatory system of the F conjugative piasmid. Molecular Microbiology, 1993, 10, 35-43.	1.2	45
27	An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. Journal of Molecular Biology, 1996, 255, 275-288.	2.0	45
28	RNA-based regulation in type I toxin–antitoxin systems and its implication for bacterial persistence. Current Genetics, 2017, 63, 1011-1016.	0.8	45
29	The toxin-antitoxin system <i>tisB-istR1</i> . RNA Biology, 2012, 9, 1513-1519.	1.5	43
30	An Antisense RNA-Mediated Transcriptional Attenuation Mechanism Functions in Escherichia coli. Journal of Bacteriology, 2002, 184, 2740-2747.	1.0	42
31	Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. Molecular Microbiology, 1994, 12, 49-60.	1.2	41
32	Hfqâ€dependent <scp>mRNA</scp> unfolding promotes <scp>sRNA</scp> â€based inhibition of translation. EMBO Journal, 2019, 38, .	3 . 5	37
33	Degradation pathway of CopA, the antisense RNA that controls replication of plasmid R1. Microbiology (United Kingdom), 1998, 144, 1907-1917.	0.7	34
34	One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the <i>Shigella</i> VirF Regulator. MBio, 2016, 7, .	1.8	34
35	Kill the messenger: bacterial antisense RNA promotes mRNA decay. Nature Structural and Molecular Biology, 2009, 16, 804-806.	3.6	33
36	The ribosomal protein S1-dependent standby site in <i>tisB</i> mRNA consists of a single-stranded region and a 5′ structure element. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15901-15906.	3.3	32

#	Article	IF	CITATIONS
37	Massive functional mapping of a $5\hat{a}\in^2$ -UTR by saturation mutagenesis, phenotypic sorting and deep sequencing. Nucleic Acids Research, 2013, 41, e122-e122.	6.5	27
38	Unstructured $5\hat{a}\in^2$ -tails act through ribosome standby to override inhibitory structure at ribosome binding sites. Nucleic Acids Research, 2018, 46, 4188-4199.	6.5	27
39	Dealing with stable structures at ribosome binding sites: Bacterial translation and ribosome standby. RNA Biology, 2007, 4, 113-117.	1.5	24
40	Disruption of the gene encoding the V-ATPase subunit A results in inhibition of normal growth and abolished sporulation in Aspergillus nidulans. Microbiology (United Kingdom), 2004, 150, 743-748.	0.7	19
41	Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM. RNA Biology, 2020, 17, 872-880.	1.5	18
42	Fluorescent CRISPR Adaptation Reporter for rapid quantification of spacer acquisition. Scientific Reports, 2017, 7, 10392.	1.6	15
43	RNA-sequence data normalization through in silico prediction of reference genes: the bacterial response to DNA damage as case study. BioData Mining, 2017, 10, 30.	2.2	15
44	Exploring the complex world of RNA regulation. Biology of the Cell, 2008, 100, e1-3.	0.7	11
45	An RNA pseudoknot is essential for standby-mediated translation of the <i>tisB </i> toxin mRNA in <i>Escherichia coli </i> . Nucleic Acids Research, 2020, 48, 12336-12347.	6.5	10
46	Loop Swapping in an Antisense RNA/Target RNA Pair Changes Directionality of Helix Progression. Journal of Biological Chemistry, 2003, 278, 35558-35563.	1.6	9
47	A method to map changes in bacterial surface composition induced by regulatory RNAs in Escherichia coli and Staphylococcus aureus. Biochimie, 2014, 106, 175-179.	1.3	8
48	Persister Formation Driven by TisB-Dependent Membrane Depolarization., 2019,, 77-97.		4
49	The Length of a DNA T-Tract Modulates Expression of a Virulence-Regulating sRNA. Molecular Cell, 2020, 80, 175-177.	4.5	0