
## Alessandro A Sartori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507453/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor.<br>Cells, 2022, 11, 643.                                                                  | 1.8 | 2         |
| 2  | Human CtIP: A â€~double agent' in DNA repair and tumorigenesis. Seminars in Cell and Developmental<br>Biology, 2021, 113, 47-56.                                                            | 2.3 | 25        |
| 3  | A stapled peptide mimetic of the CtIP tetramerization motif interferes with double-strand break repair and replication fork protection. Science Advances, 2021, 7, .                        | 4.7 | 8         |
| 4  | FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. Journal of Huntington's<br>Disease, 2021, 10, 95-122.                                                             | 0.9 | 34        |
| 5  | Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nature Chemistry, 2021, 13, 540-548.                                                | 6.6 | 42        |
| 6  | FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats.<br>Science Advances, 2021, 7, .                                                            | 4.7 | 17        |
| 7  | FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair.<br>Molecular and Cellular Biology, 2021, 41, e0030321.                                 | 1.1 | 11        |
| 8  | CO2â€FAN1 controls cag repeat expansion in huntington's disease by dual functions, MLH1 retention and nuclease activity. , 2021, , .                                                        |     | 0         |
| 9  | A Singleâ€Stranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand<br>Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970. | 5.6 | 30        |
| 10 | Functional Radiogenetic Profiling Implicates ERCC6L2 in Non-homologous End Joining. Cell Reports, 2020, 32, 108068.                                                                         | 2.9 | 29        |
| 11 | Context Matters: RNF168 Connects with PALB2 to Rewire Homologous Recombination in BRCA1<br>Haploinsufficiency. Molecular Cell, 2019, 73, 1089-1091.                                         | 4.5 | 2         |
| 12 | Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair. DNA Repair, 2019, 77, 96-108.        | 1.3 | 8         |
| 13 | Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Frontiers in Oncology, 2019, 9, 1388.                                                                                       | 1.3 | 143       |
| 14 | A Short BRCA2-Derived Cell-Penetrating Peptide Targets RAD51 Function and Confers Hypersensitivity toward PARP Inhibition. Molecular Cancer Therapeutics, 2018, 17, 1392-1404.              | 1.9 | 23        |
| 15 | CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA<br>Replication Stress. Molecular Cell, 2018, 72, 568-582.e6.                                   | 4.5 | 93        |
| 16 | Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to<br>Taxanes in Breast Cancer Cells. Cancer Cell, 2018, 33, 1094-1110.e8.                       | 7.7 | 70        |
| 17 | FAN1 interaction with ubiquitylated PCNA alleviates replication stress and preserves genomic integrity independently of BRCA2. Nature Communications, 2017, 8, 1073.                        | 5.8 | 33        |
| 18 | Activation of ATR-Chk1 pathway facilitates EBV-mediated transformation of primary tonsillar B-cells.<br>Oncotarget, 2017, 8, 6461-6474.                                                     | 0.8 | 18        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO. Frontiers in Genetics, 2016, 7, 152.                                                                                                                                             | 1.1  | 20        |
| 20 | Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nature Communications, 2016, 7, 12628.                                                                                                                    | 5.8  | 56        |
| 21 | The ubiquitin ligase APC/C <sup>Cdh1</sup> puts the brakes on DNA-end resection. Molecular and Cellular Oncology, 2015, 2, e1000696.                                                                                                                     | 0.3  | 1         |
| 22 | Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation.<br>Radiotherapy and Oncology, 2015, 116, 374-380.                                                                                                           | 0.3  | 92        |
| 23 | <scp>APC</scp> / <scp>C<sup>C</sup></scp> <sup>dh1</sup> controls Ct <scp>IP</scp> stability during the cell cycle and in response to <scp>DNA</scp> damage. EMBO Journal, 2014, 33, 2860-2879.                                                          | 3.5  | 65        |
| 24 | Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus<br>Photon Irradiation. International Journal of Radiation Oncology Biology Physics, 2014, 88, 175-181.                                                    | 0.4  | 95        |
| 25 | FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. Cell Reports, 2014, 7, 1030-1038.                                                                                                                                                        | 2.9  | 75        |
| 26 | Abstract 1315: CtIP is regulated by the APC/C-Cdh1 to mediate cell cycle-dependent control of DNA repair. , 2014, , .                                                                                                                                    |      | 0         |
| 27 | RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA<br>Double-Strand Break Resection. Molecular Cell, 2013, 49, 858-871.                                                                                              | 4.5  | 543       |
| 28 | HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature, 2013, 502, 381-384.                                                                                                                                    | 13.7 | 94        |
| 29 | Prolyl Isomerase PIN1 Regulates DNA Double-Strand Break Repair by Counteracting DNA End Resection.<br>Molecular Cell, 2013, 50, 333-343.                                                                                                                 | 4.5  | 76        |
| 30 | Prolyl isomerization: A new PIN code for DSB repair. Cell Cycle, 2013, 12, 2717-2718.                                                                                                                                                                    | 1.3  | 5         |
| 31 | Controlling DNA-end resection: a new task for CDKs. Frontiers in Genetics, 2013, 4, 99.                                                                                                                                                                  | 1.1  | 79        |
| 32 | Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss<br>Medical Weekly, 2013, 143, w13837.                                                                                                                  | 0.8  | 34        |
| 33 | Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Molecular Cell,<br>2012, 47, 669-680.                                                                                                                                    | 4.5  | 132       |
| 34 | CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation.<br>Journal of Cell Biology, 2012, 197, 869-876.                                                                                                       | 2.3  | 68        |
| 35 | Carcinogenic bacterial pathogen <i>Helicobacter pylori</i> triggers DNA double-strand breaks and a<br>DNA damage response in its host cells. Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 14944-14949. | 3.3  | 262       |
| 36 | Î <sup>3</sup> -Radiation Promotes Immunological Recognition of Cancer Cells through Increased Expression of Cancer-Testis Antigens In Vitro and In Vivo. PLoS ONE, 2011, 6, e28217.                                                                     | 1.1  | 127       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | DNA end resection by CtIP and exonuclease 1 prevents genomic instability. EMBO Reports, 2010, 11, 962-968.                                                                                                | 2.0  | 120       |
| 38 | Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents. Cell, 2010, 142, 77-88.                                                                       | 13.5 | 256       |
| 39 | MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Research, 2009, 37, 2645-2657.                                                                                                   | 6.5  | 45        |
| 40 | CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.                                                                                                   | 13.7 | 402       |
| 41 | Human CtIP promotes DNA end resection. Nature, 2007, 450, 509-514.                                                                                                                                        | 13.7 | 1,158     |
| 42 | A DNA Glycosylase from Pyrobaculum aerophilum with an 8-Oxoguanine Binding Mode and a<br>Noncanonical Helix-Hairpin-Helix Structure. Structure, 2005, 13, 87-98.                                          | 1.6  | 33        |
| 43 | Pa-AGOC, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic<br>Acids Research, 2004, 32, 6531-6539.                                                                   | 6.5  | 25        |
| 44 | Enzymology of Base Excision Repair in the Hyperthermophilic Archaeon Pyrobaculum aerophilum.<br>Journal of Biological Chemistry, 2003, 278, 24563-24576.                                                  | 1.6  | 25        |
| 45 | An Iron-Sulfur Cluster in the Family 4 Uracil-DNA Glycosylases. Journal of Biological Chemistry, 2002, 277, 16936-16940.                                                                                  | 1.6  | 66        |
| 46 | Direct Interaction between Uracil-DNA Glycosylase and a Proliferating Cell Nuclear Antigen Homolog<br>in the CrenarchaeonPyrobaculum aerophilum. Journal of Biological Chemistry, 2002, 277, 22271-22278. | 1.6  | 24        |
| 47 | A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO<br>Journal, 2002, 21, 3182-3191.                                                                         | 3.5  | 91        |
| 48 | Biochemical Characterization of Uracil Processing Activities in the Hyperthermophilic Archaeon<br>Pyrobaculum aerophilum. Journal of Biological Chemistry, 2001, 276, 29979-29986.                        | 1.6  | 48        |