Alessandro A Sartori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507453/publications.pdf

Version: 2024-02-01

48 papers

4,758 citations

172386 29 h-index 206029 48 g-index

51 all docs

51 docs citations

51 times ranked

6126 citing authors

#	Article	IF	CITATIONS
1	Human CtIP promotes DNA end resection. Nature, 2007, 450, 509-514.	13.7	1,158
2	RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection. Molecular Cell, 2013, 49, 858-871.	4.5	543
3	CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.	13.7	402
4	Carcinogenic bacterial pathogen <i>Helicobacter pylori</i> triggers DNA double-strand breaks and a DNA damage response in its host cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14944-14949.	3.3	262
5	Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents. Cell, 2010, 142, 77-88.	13.5	256
6	Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Frontiers in Oncology, 2019, 9, 1388.	1.3	143
7	Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Molecular Cell, 2012, 47, 669-680.	4.5	132
8	\hat{I}^3 -Radiation Promotes Immunological Recognition of Cancer Cells through Increased Expression of Cancer-Testis Antigens In Vitro and In Vivo. PLoS ONE, 2011, 6, e28217.	1.1	127
9	DNA end resection by CtIP and exonuclease 1 prevents genomic instability. EMBO Reports, 2010, 11, 962-968.	2.0	120
10	Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation. International Journal of Radiation Oncology Biology Physics, 2014, 88, 175-181.	0.4	95
11	HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature, 2013, 502, 381-384.	13.7	94
12	CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Molecular Cell, 2018, 72, 568-582.e6.	4.5	93
13	Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiotherapy and Oncology, 2015, 116, 374-380.	0.3	92
14	A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO Journal, 2002, 21, 3182-3191.	3.5	91
15	Controlling DNA-end resection: a new task for CDKs. Frontiers in Genetics, 2013, 4, 99.	1.1	79
16	Prolyl Isomerase PIN1 Regulates DNA Double-Strand Break Repair by Counteracting DNA End Resection. Molecular Cell, 2013, 50, 333-343.	4.5	76
17	FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. Cell Reports, 2014, 7, 1030-1038.	2.9	75
18	Targeting p38 \hat{l} ± Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell, 2018, 33, 1094-1110.e8.	7.7	70

#	Article	IF	Citations
19	CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation. Journal of Cell Biology, 2012, 197, 869-876.	2.3	68
20	An Iron-Sulfur Cluster in the Family 4 Uracil-DNA Glycosylases. Journal of Biological Chemistry, 2002, 277, 16936-16940.	1.6	66
21	<pre><scp>APC</scp>/<scp>C^C</scp>^{dh1} controls Ct<scp>IP</scp> stability during the cell cycle and in response to <scp>DNA</scp> damage. EMBO Journal, 2014, 33, 2860-2879.</pre>	3.5	65
22	Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nature Communications, 2016, 7, 12628.	5.8	56
23	Biochemical Characterization of Uracil Processing Activities in the Hyperthermophilic Archaeon Pyrobaculum aerophilum. Journal of Biological Chemistry, 2001, 276, 29979-29986.	1.6	48
24	MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Research, 2009, 37, 2645-2657.	6.5	45
25	Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nature Chemistry, 2021, 13, 540-548.	6.6	42
26	FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. Journal of Huntington's Disease, 2021, 10, 95-122.	0.9	34
27	Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss Medical Weekly, 2013, 143, w13837.	0.8	34
28	A DNA Glycosylase from Pyrobaculum aerophilum with an 8-Oxoguanine Binding Mode and a Noncanonical Helix-Hairpin-Helix Structure. Structure, 2005, 13, 87-98.	1.6	33
29	FAN1 interaction with ubiquitylated PCNA alleviates replication stress and preserves genomic integrity independently of BRCA2. Nature Communications, 2017, 8, 1073.	5.8	33
30	A Singleâ€Stranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970.	5.6	30
31	Functional Radiogenetic Profiling Implicates ERCC6L2 in Non-homologous End Joining. Cell Reports, 2020, 32, 108068.	2.9	29
32	Enzymology of Base Excision Repair in the Hyperthermophilic Archaeon Pyrobaculum aerophilum. Journal of Biological Chemistry, 2003, 278, 24563-24576.	1.6	25
33	Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Research, 2004, 32, 6531-6539.	6.5	25
34	Human CtIP: A †double agent' in DNA repair and tumorigenesis. Seminars in Cell and Developmental Biology, 2021, 113, 47-56.	2.3	25
35	Direct Interaction between Uracil-DNA Glycosylase and a Proliferating Cell Nuclear Antigen Homolog in the CrenarchaeonPyrobaculum aerophilum. Journal of Biological Chemistry, 2002, 277, 22271-22278.	1.6	24
36	A Short BRCA2-Derived Cell-Penetrating Peptide Targets RAD51 Function and Confers Hypersensitivity toward PARP Inhibition. Molecular Cancer Therapeutics, 2018, 17, 1392-1404.	1.9	23

#	Article	IF	Citations
37	Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO. Frontiers in Genetics, 2016, 7, 152.	1.1	20
38	Activation of ATR-Chk1 pathway facilitates EBV-mediated transformation of primary tonsillar B-cells. Oncotarget, 2017, 8, 6461-6474.	0.8	18
39	FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats. Science Advances, 2021, 7, .	4.7	17
40	FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair. Molecular and Cellular Biology, 2021, 41, e0030321.	1.1	11
41	Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair. DNA Repair, 2019, 77, 96-108.	1.3	8
42	A stapled peptide mimetic of the CtIP tetramerization motif interferes with double-strand break repair and replication fork protection. Science Advances, 2021, 7, .	4.7	8
43	Prolyl isomerization: A new PIN code for DSB repair. Cell Cycle, 2013, 12, 2717-2718.	1.3	5
44	Context Matters: RNF168 Connects with PALB2 to Rewire Homologous Recombination in BRCA1 Haploinsufficiency. Molecular Cell, 2019, 73, 1089-1091.	4.5	2
45	RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor. Cells, 2022, 11, 643.	1.8	2
46	The ubiquitin ligase APC/C $<$ sup $>$ Cdh1 $<$ /sup $>$ puts the brakes on DNA-end resection. Molecular and Cellular Oncology, 2015, 2, e1000696.	0.3	1
47	C02â€FAN1 controls cag repeat expansion in huntington's disease by dual functions, MLH1 retention and nuclease activity. , 2021, , .		0
48	Abstract 1315: CtIP is regulated by the APC/C-Cdh1 to mediate cell cycle-dependent control of DNA repair. , 2014, , .		0