Kwunmin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507287/publications.pdf

Version: 2024-02-01

65	1,758	28 h-index	39
papers	citations		g-index
83	83	83	1233
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Asymmetric Organocatalysis of Activated Alkynes and Enynes. Asian Journal of Organic Chemistry, 2021, 10, 1567-1579.	2.7	8
2	Enantioselective Azaâ€Friedelâ€Crafts Reaction of Heteroarenes with ⟨i⟩inâ€situ⟨/i⟩ Generated Isoxazolium Ions via Chiral Phosphoric Acid Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 3502-3506.	4.3	10
3	[3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of \hat{l}^3 -attack <i>vs.</i> \hat{l} -attack using DFT studies. RSC Advances, 2021, 11, 38648-38653.	3.6	10
4	Enantioselective Organocatalytic Synthesis of <i>δ</i> àê€actoneâ€Fused 4â€Chromanones. Advanced Synthesis and Catalysis, 2020, 362, 3846-3850.	4.3	6
5	Organocatalytic Diastereoselective Synthesis of Diazoaryl-benzo[<i>b</i>]azepine Derivatives. Journal of Organic Chemistry, 2020, 85, 7060-7067.	3.2	13
6	An Unprecedented Organocascade Synthesis of Functionalized Bicyclic Nitrones from 2â€Aminomalonate Derived Nucleophiles and 1â€Nitroâ€1,3â€Enynes via Allenes Formation and Subsequent Rearrangement. Advanced Synthesis and Catalysis, 2019, 361, 170-175.	4.3	8
7	Organocatalytic Threeâ€Component, Oneâ€Pot Reaction of Highly Substituted Tetrahydropyrano[2, 3â€c]pyrazoles. ChemistrySelect, 2018, 3, 3500-3504.	1.5	8
8	Organocatalytic synthesis of densely functionalized oxa-bridged 2,6-epoxybenzo[<i>b</i>][1,5]oxazocine heterocycles. Chemical Communications, 2018, 54, 6048-6051.	4.1	16
9	Organocatalytic Synthesis of Spirocarbocycles. Mini-Reviews in Organic Chemistry, 2018, 15, 364-373.	1.3	11
10	Diastereoselective Synthesis of Functionalized Angularlyâ€Fused Tetracycles <i>via</i> an Organocatalytic Quadruple Reaction Sequence. Advanced Synthesis and Catalysis, 2017, 359, 1277-1282.	4.3	6
11	Organocascade Synthesis of Bicyclo[3.3.1]nonanâ€9â€ones Initiated by an Unusual 1,6â€Addition of Cyclohexanones to (<i>E</i>)â€2â€(3â€Arylallylidene)â€1 <i>H</i> àâ€indeneâ€1,3(2 <i>H</i>)â€diones. Advanced and Catalysis, 2017, 359, 3005-3013.	Synthesis	6
12	Morita–Baylis–Hillman (MBH) Reaction Derived Nitroallylic Alcohols, Acetates and Amines as Synthons in Organocatalysis and Heterocycle Synthesis. Chemical Record, 2017, 17, 363-381.	5.8	52
13	Recent Advances in Organocatalytic Kinetic Resolution for the Synthesis of Functionalized Products. ChemCatChem, 2016, 8, 86-96.	3.7	48
14	Organocatalytic one-pot asymmetric synthesis of functionalized spiropyrazolones via a Michael-aldol sequential reaction. RSC Advances, 2016, 6, 77474-77480.	3.6	30
15	Dihydrooxazine $\langle i \rangle N \langle i \rangle$ -Oxide Intermediates as Resting States in Organocatalytic Kinetic Resolution of Functionalized Nitroallylic Amines with Aldehydes. Organic Letters, 2016, 18, 3046-3049.	4.6	19
16	Organocascade Synthesis of Annulated (<i>Z</i>)-2-Methylenepyrans: Nucleophilic Conjugate Addition of Hydroxycoumarins and Pyranone to Branched Nitro Enynes via Allene Formation/Oxa-Michael Cyclization/Alkene Isomerization Sequence. Organic Letters, 2016, 18, 3098-3101.	4.6	38
17	Rauhut–Currierâ€Initiated Organocascade Reaction: Synthesis of Substituted Dispirocyclohexanes through a [2+2+2] Strategy Between 2â€Arylideneindanâ€1,3â€diones and Activated Alkenes. Advanced Synthesis and Catalysis, 2015, 357, 2457-2463.	4.3	19
18	Threeâ€Component Triple Organocascade Synthesis of Hexahydropyridazine Derivatives via a Sequential Michael/Amination/Cyclization Reaction. Journal of the Chinese Chemical Society, 2015, 62, 843-849.	1.4	3

#	Article	IF	Citations
19	Enantioselective Synthesis of Functionalized Polycarbocycles via a Three-Component Organocascade Quadruple Reaction. Organic Letters, 2015, 17, 2908-2911.	4.6	31
20	Control of Five Contiguous Stereogenic Centers in an Organocatalytic Kinetic Resolution via Michael/Acetalization Sequence: Synthesis of Fully Substituted Tetrahydropyranols. Organic Letters, 2015, 17, 430-433.	4.6	23
21	Organocatalytic synthesis of spirocyclohexane indane-1,3-diones via a chiral squaramide-catalyzed Michael/aldol cascade reaction of \hat{I}^3 -nitro ketones and 2-arylideneindane-1,3-diones. Tetrahedron, 2015, 71, 8003-8008.	1.9	24
22	Organocatalytic desymmetrization of cyclic meso-anhydrides through enantioselective alcoholysis with functionalized primary nitroallylic alcohols. Tetrahedron, 2014, 70, 9064-9069.	1.9	9
23	Organocatalytic Kinetic Resolution of Racemic Secondary Nitroallylic Alcohols Combined with Simultaneous Desymmetrization of Prochiral Cyclic Anhydrides. Journal of Organic Chemistry, 2014, 79, 8955-8959.	3.2	19
24	Exhibits a Better Anticancer Effect than Platinum-Based Chemotherapy by Induction of Apoptosis and Curcumin Further Enhances its Chemosensitivity. Cell Biochemistry and Biophysics, 2014, 68, 597-609.	1.8	6
25	Organocatalytic Synthesis of Substituted Spirocyclohexane Carbaldehydes via [4 + 2] Annulation Strategy between 2-Arylideneindane-1,3-diones and Glutaraldehyde. Organic Letters, 2014, 16, 2993-2995.	4.6	47
26	Organocatalytic formal [5+1] annulation: diastereoselective cascade synthesis of functionalized six-membered spirocyclic indane-1,3-diones/oxindoles via Michael–aldol reaction. Tetrahedron, 2013, 69, 8751-8757.	1.9	38
27	Threeâ€component Synthesis of Functionalized <i>N</i> â€Protected Tetrasubstituted Pyrroles by an Additionâ€Eliminationâ€Aromatization Process. Asian Journal of Organic Chemistry, 2013, 2, 330-335.	2.7	37
28	Desymmetrization and Switching of Stereoselectivity in Direct Organocatalytic Michael Addition of Ketones to 1,1â€Bis(phenylsulfonyl)ethylene. European Journal of Organic Chemistry, 2013, 2013, 2699-2707.	2.4	17
29	Synthesis of Fully Substituted Dispirocyclohexanes by Organocatalytic $[2+2+2]$ Annulation Strategy between 2-Arylideneindane-1,3-diones and Aldehydes. Organic Letters, 2013, 15, 2880-2883.	4.6	41
30	An Efficient Friedel–Crafts/Oxaâ€Michael/Aromatic Annulation: Rapid Access to Substituted Naphtho[2,1â€∢i>b) Jfuran, Naphtho[1,2â€∢i>b) Jfuran, and Benzofuran Derivatives. Chemistry - A European Journal, 2013, 19, 4344-4351.	3.3	51
31	An Expedient Stereoselective Synthesis of Spirocyclopropyl Oxindoles from Indolinâ€2â€One/ <i>N</i> i>Ni>â€Protected Indolinâ€2â€Ones and Bromonitroalkenes. Journal of the Chinese Chemica Society, 2013, 60, 597-604.	ll1.4	6
32	Synthesis of substituted chiral chromans via organocatalytic kinetic resolution ofÂracemic 3-nitro-2-aryl-2H-chromenes with ketones catalyzed by pyrrolidinyl-camphor-derived organocatalysts. Tetrahedron, 2012, 68, 5810-5816.	1.9	13
33	The combination of domino process and kinetic resolution: organocatalytic synthesis of functionalised cyclopentenes by sequential SN2′-Michael reaction. Tetrahedron, 2012, 68, 7317-7321.	1.9	29
34	Three-Component Organocascade Kinetic Resolution of Racemic Nitroallylic Acetates via Sequential Iminium/Enamine Asymmetric Catalysis. Organic Letters, 2012, 14, 2496-2499.	4.6	32
35	Silica gelâ€Mediated Friedelâ€Crafts Reaction of Indoles with Functionalized Nitroallylic Acetates via an S _N 1 Process. Journal of the Chinese Chemical Society, 2012, 59, 940-946.	1.4	2
36	Efficient Synthesis of Tetrasubstituted Furans from Nitroallylic Acetates and 1,3â€Dicarbonyl/αâ€Activating Ketones by Feist–Bénary Addition–Elimination. Chemistry - an Asian Journal, 2012, 7, 688-691.	3.3	70

#	Article	IF	CITATIONS
37	Kinetic Resolution of Activated Nitroallylic Acetates with Aldehydes and Ketones through a Conjugate Addition–Elimination S _N 2′ Process. European Journal of Organic Chemistry, 2012, 2012, 353-365.	2.4	24
38	Organocatalytic Synthesis of Multiple Substituted Bicyclo [4.4.0] Decalin System. Organic Letters, 2011, 13, 2200-2203.	4.6	37
39	Highly Efficient Organocatalytic Kinetic Resolution of Activated Nitroallylic Acetates with Aldehydes via Conjugate Additionâ^Elimination. Organic Letters, 2011, 13, 1458-1461.	4.6	47
40	Synthesis of 2,3,5,6-tetrahydro-1-alkyl/aryl-1H-benzo[f]chromen-3-ol derivatives from \hat{l}^2 -tetralones and \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Organic and Biomolecular Chemistry, 2011, 9, 7510.	2.8	13
41	Pyrrolidine-linker-camphor assembly: bifunctional organocatalysts for efficient Michael addition of cyclohexanone to nitroolefins under neat conditions. Tetrahedron, 2011, 67, 1171-1177.	1.9	21
42	An Efficient and Convenient Synthesis of Ethyl 1â€(4â€Methoxyphenyl)â€5â€phenylâ€1 <i>H</i> à€1,2,3â€triazoleâ€4â€carboxylate. Chemistry - an Asian Journ 328-333.	nal,3 2: 010,	5, 14
43	Remarkable Reaction Rate and Excellent Enantioselective Direct αâ€Amination of Aldehydes with Azodicarboxylates Catalyzed by Pyrrolidinylcamphorâ€Derived Organocatalysts. European Journal of Organic Chemistry, 2010, 2010, 42-46.	2.4	36
44	Highly Enantioselective Conjugate Addition of Ketones to Alkylidene Malonates Catalyzed by a Pyrrolidinyl–Camphorâ€Derived Organocatalyst. European Journal of Organic Chemistry, 2010, 2010, 2062-2066.	2.4	32
45	Highly Efficient and Practical Pyrrolidine–Camphorâ€Derived Organocatalysts for the Direct αâ€Amination of Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 5705-5713.	2.4	21
46	Pyrrolidinyl–Camphor Derivatives as a New Class of Organocatalyst for Direct Asymmetric Michael Addition of Aldehydes and Ketones to βâ€Nitroalkenes. Chemistry - A European Journal, 2010, 16, 7030-7038.	3.3	78
47	An efficient Morita–Baylis–Hillman reaction for the synthesis of multifunctional 2-hydroxy-3-nitrobut-3-enoate derivatives. Tetrahedron, 2010, 66, 9875-9879.	1.9	32
48	Pyrrolidine amphor Derivative as an Organocatalyst for Asymmetic Michael Additions of α,αâ€Disubstituted Aldehydes to βâ€Nitroalkenes: Construction of Quaternary Carbonâ€Bearing Aldehydes under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2009, 351, 1273-1278.	4.3	59
49	Novel Prolinamide–Camphorâ€Containing Organocatalysts for Direct Asymmetric Michael Addition of Unmodified Aldehydes to Nitroalkenes. Chemistry - A European Journal, 2009, 15, 9294-9298.	3.3	56
50	Highly diastereo- and enantioselective direct aldol reactions promoted by water-compatible organocatalysts bearing a pyrrolidinyl-camphor structural scaffold. Tetrahedron, 2009, 65, 2879-2888.	1.9	62
51	Diastereoselective electrophilic \hat{l} ±-amination of camphor N1-acyl N2-phenylpyrazolidinones: the metal enolate-dependent synthesis of two possible hydrazide diastereomers. Tetrahedron Letters, 2009, 50, 333-336.	1.4	11
52	Camphor containing organocatalysts in asymmetric aldol reaction on water. Tetrahedron Letters, 2008, 49, 4134-4137.	1.4	53
53	On the scope of diastereoselective aziridination of various chiral auxiliaries derived N- and O-enones with N-aminophthalimide in the presence of lead tetraacetate. Tetrahedron: Asymmetry, 2008, 19, 682-690.	1.8	12
54	On the scope of diastereoselective allylation of various chiral glyoxylic oxime ethers with allyltributylstannane in the presence ofÂa Lewis acid and triallylaluminum. Tetrahedron, 2007, 63, 7816-7822.	1.9	13

#	Article	lF	CITATIONS
55	Diastereoselective allylation of î±-ketoamides bearing camphor N-tosylpyrazolidinone auxiliary: efficient synthesis of highly optically active two stereoisomers. Tetrahedron, 2006, 62, 887-893.	1.9	16
56	Excellent diastereoselective allylation of camphor derived glyoxylic oxime ethers mediated by a Lewis acid. Tetrahedron Letters, 2006, 47, 611-613.	1.4	15
57	Photoinduced Aziridination Reaction Sensitized by PbOx-Modified Zeolite. Journal of Physical Chemistry B, 2004, 108, 20458-20464.	2.6	2
58	On the scope of diastereoselective epoxidation of various chiral auxiliaries derived enones: the conformational analysis of camphor derived N- and O-enones. Tetrahedron, 2004, 60, 6657-6664.	1.9	14
59	Epoxidation of Chiral CamphorN-Enoylpyrazolidinones with Methyl(trifluoromethyl)dioxirane and Urea Hydrogen Peroxide/Acid Anhydride:Â Reversal of Stereoselectivity. Journal of Organic Chemistry, 2003, 68, 9816-9818.	3.2	25
60	Diastereoselective Epoxidation of Camphor <i>N</i> à€Enoylpyrazolidinones. Journal of the Chinese Chemical Society, 2003, 50, 1047-1051.	1.4	8
61	Enantioselective Aziridination of Alkenes withN-Aminophthalimide in the Presence of Lead Tetraacetate-Mediated Chiral Ligand. Organic Letters, 2002, 4, 1107-1109.	4.6	32
62	A Facile and Highly Diastereoselective Aziridination of Chiral CamphorN-Enoylpyrazolidinones withN-Aminophthalimide. Journal of Organic Chemistry, 2001, 66, 1676-1679.	3.2	36
63	A remarkable rate acceleration of the Baylis–Hillman reaction. Chemical Communications, 2001, , 1612-1613.	4.1	51
64	Diastereoselective Baylisâ^'Hillman Reactions:  The Design and Synthesis of a Novel Camphor-Based Chiral Auxiliary. Organic Letters, 2000, 2, 729-731.	4.6	95
65	Novel Camphor-Derived Chiral Auxiliaries:Â Significant Solvent and Additive Effects on Asymmetric Reduction of Chiral α-Keto Esters. Journal of Organic Chemistry, 1999, 64, 6993-6998.	3.2	37