List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506989/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. Journal of Hydrology, 2017, 554, 263-276.	5.4	192
2	Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology, 2013, 505, 240-249.	5.4	137
3	Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 2022, 489, 271-308.	5.9	115
4	Genetic programming in water resources engineering: A state-of-the-art review. Journal of Hydrology, 2018, 566, 643-667.	5.4	110
5	Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrological Sciences Journal, 2020, 65, 254-268.	2.6	105
6	A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geoscience Frontiers, 2017, 8, 517-527.	8.4	95
7	A hybrid support vector regression–firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 2019, 16, 335-346.	3.5	88
8	Successive-station monthly streamflow prediction using different artificial neural network algorithms. International Journal of Environmental Science and Technology, 2015, 12, 2191-2200.	3.5	83
9	A gene–wavelet model for long lead time drought forecasting. Journal of Hydrology, 2014, 517, 691-699.	5.4	82
10	Iran's Agriculture in the Anthropocene. Earth's Future, 2020, 8, e2020EF001547.	6.3	82
11	Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting. Water Resources Management, 2021, 35, 4167-4187.	3.9	79
12	Identification of the trends associated with the SPI and SPEI indices across Ankara, Turkey. Theoretical and Applied Climatology, 2020, 139, 1531-1542.	2.8	76
13	Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests. Environmental Earth Sciences, 2018, 77, 1.	2.7	60
14	A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environmental Modelling and Software, 2017, 92, 239-251.	4.5	59
15	A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction. Journal of Hydrology, 2017, 549, 603-615.	5.4	54
16	A novel intelligent deep learning predictive model for meteorological drought forecasting. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 10441-10455.	4.9	54
17	An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of Hydrology, 2018, 563, 669-678.	5.4	53
18	Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. Journal of Hydrology, 2018, 562, 455-467.	5.4	48

#	Article	IF	CITATIONS
19	Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 2020, 587, 125017.	5.4	48
20	Combination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipes. International Journal of Sediment Research, 2020, 35, 157-170.	3.5	47
21	Multigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed deposit. International Journal of Sediment Research, 2018, 33, 262-270.	3.5	46
22	Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling. Water Resources Management, 2018, 32, 2665-2679.	3.9	46
23	Linear genetic programming application for successive-station monthly streamflow prediction. Computers and Geosciences, 2014, 70, 63-72.	4.2	44
24	Caspian Sea is eutrophying: the alarming message of satellite data. Environmental Research Letters, 2020, 15, 124047.	5.2	42
25	On the implementation of a novel data-intelligence model based on extreme learning machine optimized by bat algorithm for estimating daily chlorophyll-a concentration: Case studies of river and lake in USA. Journal of Cleaner Production, 2021, 285, 124868.	9.3	39
26	Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Science Informatics, 2014, 7, 217-229.	3.2	37
27	Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey. Theoretical and Applied Climatology, 2020, 141, 1045-1055.	2.8	35
28	Rectangular side weirs discharge coefficient estimation in circular channels using linear genetic programming approach. Journal of Hydroinformatics, 2014, 16, 1318-1330.	2.4	34
29	A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events. Journal of Hydrology, 2017, 555, 397-406.	5.4	34
30	Pareto-optimal MPSA-MGGP: A new gene-annealing model for monthly rainfall forecasting. Journal of Hydrology, 2019, 571, 406-415.	5.4	29
31	Climate Change Impacts on Catchment-Scale Extreme Rainfall Variability: Case Study of Rize Province, Turkey. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	28
32	Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model. Theoretical and Applied Climatology, 2020, 139, 549-564.	2.8	28
33	MSGP-LASSO: An improved multi-stage genetic programming model for streamflow prediction. Information Sciences, 2021, 561, 181-195.	6.9	27
34	Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm. Journal of Hydrology, 2020, 587, 125014.	5.4	26
35	ENN-SA: A novel neuro-annealing model for multi-station drought prediction. Computers and Geosciences, 2020, 145, 104622.	4.2	22
36	Seasonal rainfall hindcasting using ensemble multi-stage genetic programming. Theoretical and Applied Climatology, 2021, 143, 461-472.	2.8	18

#	Article	IF	CITATIONS
37	A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theoretical and Applied Climatology, 2022, 148, 255-268.	2.8	18
38	A spatiotemporal teleconnection study between Peruvian precipitation and oceanic oscillations. Quaternary International, 2020, 565, 1-11.	1.5	17
39	An ensemble genetic programming approach to develop incipient sediment motion models in rectangular channels. Journal of Hydrology, 2020, 584, 124753.	5.4	17
40	Multitemporal meteorological drought forecasting using Bat-ELM. Acta Geophysica, 2022, 70, 917-927.	2.0	17
41	Energy Demand Forecasting Using Deep Learning. EAI/Springer Innovations in Communication and Computing, 2020, , 71-104.	1.1	16
42	A Novel Fuzzy Random Forest Model for Meteorological Drought Classification and Prediction in Ungauged Catchments. Pure and Applied Geophysics, 2020, 177, 5993-6006.	1.9	15
43	Application of Soft Computing Techniques for Particle Froude Number Estimation in Sewer Pipes. Journal of Pipeline Systems Engineering and Practice, 2020, 11, .	1.6	15
44	Grid-based performance evaluation of GCM-RCM combinations for rainfall reproduction. Theoretical and Applied Climatology, 2017, 129, 47-57.	2.8	14
45	Emotional ANN (EANN): A New Generation of Neural Networks for Hydrological Modeling in IoT. Transactions on Computational Science and Computational Intelligence, 2019, , 45-61.	0.3	14
46	Drought classification using gradient boosting decision tree. Acta Geophysica, 2021, 69, 909-918.	2.0	14
47	Wavelet Packet-Genetic Programming: A New Model for Meteorological Drought Hindcasting. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2021, 32, 11029-11050.	1.1	14
48	Innovative and successive average trend analysis of temperature and precipitation in Osijek, Croatia. Theoretical and Applied Climatology, 2021, 145, 875-890.	2.8	13
49	Sea Level Prediction Using Machine Learning. Water (Switzerland), 2021, 13, 3566.	2.7	10
50	An ensemble genetic programming model for seasonal precipitation forecasting. SN Applied Sciences, 2020, 2, 1.	2.9	9
51	A gradient boosting tree approach for SPEI classification and prediction in Turkey. Hydrological Sciences Journal, 2021, 66, 1653-1663.	2.6	8
52	A New Evolutionary Hybrid Random Forest Model for SPEI Forecasting. Water (Switzerland), 2022, 14, 755.	2.7	8
53	Multiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts. Environmental Monitoring and Assessment, 2020, 192, 25.	2.7	7
54	The Validity of Deep Learning Computational Model for Wind Speed Simulation. , 2021, , .		6

The Validity of Deep Learning Computational Model for Wind Speed Simulation. , 2021, , . 54

4

#	Article	IF	CITATIONS
55	Sediment transport modeling in non-deposition with clean bed condition using different tree-based algorithms. PLoS ONE, 2021, 16, e0258125.	2.5	5
56	Application of Deep Learning Neural Networks for Nitrate Prediction in the Klokot River, Bosnia and Herzegovina. , 2021, , .		4
57	Coastline change determination using UAV technology: a case study along the Konyaaltı coast, Antalya, Turkey. , 2020, , 123-141.		4
58	Climate change impacts on floodway and floodway fringe: a case study in Shahrchay River Basin, Iran. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	3
59	Genetic programming for streamflow forecasting. , 2021, , 193-214.		3
60	Predicting dissolved oxygen concentration in river using new advanced machines learning: Long-short term memory (LSTM) deep learning. , 2022, , 1-20.		3
61	Study on spatial-temporal variations of Meteorological-Agricultural droughts in Turkey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W4, 483-490.	0.2	3
62	Electrical Energy Demand Prediction: A Comparison Between Genetic Programming and Decision Tree. Gazi University Journal of Science, 2020, 33, 62-72.	1.2	3
63	AKIM VE SEDIMENT YÜK ÖNGÖRÜMÜ İÇIN DOĞRUSAL GENETIK PROGRAMLAMANIN UYGULANMASI. University Journal of the Faculty of Engineering, 2018, 23, 323-332.	UludaÄŸ 0.2	2
64	Risk Assessment of Fuel Supply Pipelines: Kalecik Power Plant Case Study. Journal of Pipeline Systems Engineering and Practice, 2020, 11, .	1.6	1
65	A Genetic Programming Approach to Forecast Daily Electricity Demand. Advances in Intelligent Systems and Computing, 2019, , 301-308.	0.6	1
66	Genetic programming for turbidity prediction: hourly and monthly scenarios. Pamukkale University Journal of Engineering Sciences, 2019, 25, 992-997.	0.4	1
67	A long short-term memory deep learning approach for river water temperature prediction. , 2022, , 243-270.		1
68	Nordic contributions to stochastic methods in hydrology. Hydrology Research, 2022, 53, 840-866.	2.7	1