
Daniel Abankwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug targeting opportunities en route to Ras nanoclusters. Advances in Cancer Research, 2022, 153, 63-99.	5.0	5
2	Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals, 2022, 15, 179.	3.8	3
3	Potential of phenothiazines to synergistically block calmodulin and reactivate PP2A in cancer cells. PLoS ONE, 2022, 17, e0268635.	2.5	10
4	Stability of the Phosphotriester PDE6D Inhibitors. ChemistrySelect, 2021, 6, 488-493.	1.5	1
5	FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage. Methods in Molecular Biology, 2021, 2262, 233-250.	0.9	5
6	Promotion of cancer cell stemness by Ras. Biochemical Society Transactions, 2021, 49, 467-476.	3.4	14
7	Novel Small Molecule Hsp90/Cdc37 Interface Inhibitors Indirectly Target K-Ras-Signaling. Cancers, 2021, 13, 927.	3.7	11
8	NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane. Life Science Alliance, 2021, 4, e202000972.	2.8	8
9	Elaiophylin Is a Potent Hsp90/ Cdc37 Protein Interface Inhibitor with K-Ras Nanocluster Selectivity. Biomolecules, 2021, 11, 836.	4.0	6
10	A Covalent Calmodulin Inhibitor as a Tool to Study Cellular Mechanisms of K-Ras-Driven Stemness. Frontiers in Cell and Developmental Biology, 2021, 9, 665673.	3.7	13
11	Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and <i>in Vitro</i> Experimental Validation of Computationally Screened Inhibitors. Journal of Chemical Information and Modeling, 2021, 61, 4082-4096.	5.4	22
12	Medium-Throughput Detection of Hsp90/Cdc37 Protein–Protein Interaction Inhibitors Using a Split Renilla Luciferase-Based Assay. SLAS Discovery, 2020, 25, 195-206.	2.7	10
13	PDE6D Inhibitors with a New Design Principle Selectively Block K-Ras Activity. ACS Omega, 2020, 5, 832-842.	3.5	27
14	Mechanisms of Ras Membrane Organization and Signaling: Ras Rocks Again. Biomolecules, 2020, 10, 1522.	4.0	28
15	A subset of flavaglines inhibits KRAS nanoclustering and activation. Journal of Cell Science, 2020, 133,	2.0	10
16	Abstract B29: SHANK3 in oncogenic RAS signaling. , 2020, , .		1
17	High-throughput amenable fluorescence-assays to screen for calmodulin-inhibitors. Analytical Biochemistry, 2019, 572, 25-32.	2.4	13
18	Targeting prohibitins at the cell surface prevents Th17â€mediated autoimmunity. EMBO Journal, 2018, 37, .	7.8	16

DANIEL ABANKWA

#	Article	IF	CITATIONS
19	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	7.6	38
20	Opposite feedback from mTORC1 to H-ras and K-ras4B downstream of SREBP1. Scientific Reports, 2017, 7, 8944.	3.3	12
21	Rapalogs can promote cancer cell stemness <i>in vitro</i> in a Galectin-1 and H-ras-dependent manner. Oncotarget, 2017, 8, 44550-44566.	1.8	20
22	Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering. Scientific Reports, 2016, 6, 24165.	3.3	65
23	SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Molecular and Cellular Biology, 2016, 36, 2612-2625.	2.3	20
24	Mechanism of JAK2 Activation by the Archetype Class I Cytokine Receptor, the Growth Hormone Receptor. Biophysical Journal, 2016, 110, 31a.	0.5	0
25	Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene, 2016, 35, 5248-5262.	5.9	78
26	Automated High-Throughput Fluorescence Lifetime Imaging Microscopy to Detect Protein–Protein Interactions. Journal of the Association for Laboratory Automation, 2016, 21, 238-245.	2.8	23
27	ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold. PLoS ONE, 2016, 11, e0159677.	2.5	16
28	Abstract 1877: A new H-ras specific feedback loop from the TOR-pathway impacts on tumorigenicity. , 2016, , .		0
29	GTP-Specific Fab Fragment-Based GTPase Activity Assay. Analytical Chemistry, 2015, 87, 3527-3534.	6.5	9
30	Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers. Biochemistry, 2015, 54, 7212-7221.	2.5	7
31	Rab-NANOPS: FRET Biosensors for Rab Membrane Nanoclustering and Prenylation Detection in Mammalian Cells. Methods in Molecular Biology, 2015, 1298, 29-45.	0.9	5
32	Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. ELife, 2015, 4, e08905.	6.0	45
33	The Efficacy of Raf Kinase Recruitment to the GTPase H-ras Depends on H-ras Membrane Conformer-specific Nanoclustering. Journal of Biological Chemistry, 2014, 289, 9519-9533.	3.4	47
34	Mechanism of Activation of Protein Kinase JAK2 by the Growth Hormone Receptor. Science, 2014, 344, 1249783.	12.6	340
35	FRET-reporter nanoparticles to monitor redox-induced intracellular delivery of active compounds. RSC Advances, 2014, 4, 16429-16437.	3.6	17
36	RhoGDI facilitates geranylgeranyltransferase-I-mediated RhoA prenylation. Biochemical and Biophysical Research Communications, 2014, 452, 967-973.	2.1	5

DANIEL ABANKWA

#	Article	IF	CITATIONS
37	Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT. European Journal of Medicinal Chemistry, 2014, 84, 77-89.	5.5	24
38	A homogeneous quenching resonance energy transfer assay for H-Ras activation cycle monitoring and inhibitor screening. New Biotechnology, 2014, 31, S37.	4.4	0
39	A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction. Analytical and Bioanalytical Chemistry, 2014, 406, 4147-4156.	3.7	22
40	Nanoclustering and Heterogeneous Membrane Diffusion of Ras Studied by FRAP and RICS Analysis. Methods in Molecular Biology, 2014, 1120, 307-326.	0.9	6
41	ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays. PLoS ONE, 2014, 9, e92444.	2.5	505
42	Ski-interacting protein (SKIP) interacts with androgen receptor in the nucleus and modulates androgen-dependent transcription. BMC Biochemistry, 2013, 14, 10.	4.4	14
43	H-Ras Membrane Orientation Affects Galectin-1 Dependent Nanoclustering. Biophysical Journal, 2013, 104, 119a.	0.5	0
44	Lipid-Anchored Ras is Sorted by Membrane Curvature Both InÂVitro and in Living Cells. Biophysical Journal, 2013, 104, 96a.	0.5	0
45	Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS ONE, 2013, 8, e66425.	2.5	25
46	Quantitative Analysis of Prenylated RhoA Interaction with Its Chaperone, RhoGDI. Journal of Biological Chemistry, 2012, 287, 26549-26562.	3.4	47
47	Design and Application of InÂVivo FRET Biosensors to Identify Protein Prenylation and Nanoclustering Inhibitors. Chemistry and Biology, 2012, 19, 866-874.	6.0	30
48	The Effects of Transmembrane Sequence and Dimerization on Cleavage of the p75 Neurotrophin Receptor by γ-Secretase. Journal of Biological Chemistry, 2012, 287, 43810-43824.	3.4	45
49	Flexible and General Synthesis of Functionalized Phosphoisoprenoids for the Study of Prenylation in vitro. ChemBioChem, 2012, 13, 674-683.	2.6	15
50	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	28.9	791
51	Isoprenoid Modifications. , 2011, , 1-37.		2
52	An N-Terminal Polybasic Motif of Gα _q Is Required for Signaling and Influences Membrane Nanodomain Distribution. Molecular Pharmacology, 2010, 78, 767-777.	2.3	18
53	Ras membrane orientation and nanodomain localization generate isoform diversity. Proceedings of the United States of America, 2010, 107, 1130-1135.	7.1	209
54	MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 2009, 185, 1259-1273.	5.2	243

DANIEL ABANKWA

#	Article	IF	CITATIONS
55	A novel switch region regulates H-ras membrane orientation and signal output. EMBO Journal, 2008, 27, 727-735.	7.8	182
56	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	28.9	647
57	Mechanisms of Ras membrane organization and signaling: Ras on a rocker. Cell Cycle, 2008, 7, 2667-2673.	2.6	68
58	A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. Journal of Cell Science, 2007, 120, 2953-2962.	2.0	47
59	Ras nanoclusters: Molecular structure and assembly. Seminars in Cell and Developmental Biology, 2007, 18, 599-607.	5.0	125
60	Structure and Dynamics of the Full-Length Lipid-Modified H-Ras Protein in a 1,2-Dimyristoylglycero-3-phosphocholine Bilayer. Journal of Medicinal Chemistry, 2007, 50, 674-684.	6.4	189
61	Monitoring the Diffusion of Single Heterotrimeric G Proteins in Supported Cell-membrane Sheets Reveals their Partitioning into Microdomains. Journal of Molecular Biology, 2006, 363, 918-930.	4.2	46
62	Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. European Journal of Neuroscience, 2004, 19, 32-42.	2.6	32
63	Traumatic Injury to CNS Fiber Tracts - What are the Genes Telling Us?. Current Drug Targets, 2004, 5, 647-654.	2.1	3
64	Dynamic Changes in Gene Expression Profiles Following Axotomy of Projection Fibres in the Mammalian CNS. Molecular and Cellular Neurosciences, 2002, 21, 421-435.	2.2	18