Robert P Skelton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5744-5749.	7.1	261
2	Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytologist, 2016, 209, 1403-1409.	7.3	213
3	Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytologist, 2017, 214, 561-569.	7.3	119
4	Low Vulnerability to Xylem Embolism in Leaves and Stems of North American Oaks. Plant Physiology, 2018, 177, 1066-1077.	4.8	117
5	Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. New Phytologist, 2017, 215, 1399-1412.	7.3	111
6	How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae "fire-resisters― South African Journal of Botany, 2011, 77, 381-386.	2.5	58
7	No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. New Phytologist, 2019, 223, 1296-1306.	7.3	52
8	Beyond isohydricity: The role of environmental variability in determining plant drought responses. Plant, Cell and Environment, 2019, 42, 1104-1111.	5.7	47
9	Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
10	The ecohydrological context of drought and classification of plant responses. Ecology Letters, 2018, 21, 1723-1736.	6.4	38
11	Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait?. Australian Journal of Botany, 2012, 60, 104.	0.6	37
12	Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Functional Ecology, 2020, 34, 777-787.	3.6	23
13	External heat-pulse method allows comparative sapflow measurements in diverse functional types in a Mediterranean-type shrubland in South Africa. Functional Plant Biology, 2013, 40, 1076.	2.1	20
14	Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance. Plant Physiology, 2019, 179, 1433-1434.	4.8	9
15	Examining variation in hydraulic and resource acquisition traits along climatic gradients tests our understanding of plant form and function. New Phytologist, 2019, 223, 505-507.	7.3	7
16	Quantifying losses of plant hydraulic function: seeing the forest, the trees and the xylem. Tree Physiology, 2020, 40, 285-289.	3.1	6
17	Stem Diameter Fluctuations Provide a New Window into Plant Water Status and Function. Plant Physiology, 2020, 183, 1414-1415.	4.8	5
18	Miniature External Sapflow Gauges and the Heat Ratio Method for Quantifying Plant Water Loss. Bio-protocol, 2017, 7, e2121.	0.4	2

ROBERT P SKELTON

#	Article	IF	CITATIONS
19	Injecting New Life into a Classic Technique. Plant Physiology, 2019, 180, 706-707.	4.8	1
20	Simulation Modeling Platform Provides a Powerful Tool for Identifying Optimal Traits and Management Practices for Wheat Production. Plant Physiology, 2019, 181, 847-848.	4.8	1
21	Phenological asynchrony between sexes of Restionaceae can explain culm <scp> î´ ¹³ C </scp> differences. Austral Ecology, 0, , .	1.5	1
22	Burying Your Head in the Sand: Heading Belowground to Find Future Targets of Selection in Roots. Plant Physiology, 2019, 180, 1786-1787.	4.8	0