Shu-Hui Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506411/publications.pdf

Version: 2024-02-01

186265 254184 2,731 186 28 43 citations h-index g-index papers 187 187 187 2699 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A simultaneous multiâ€slice T ₂ mapping framework based on overlappingâ€echo detachment planar imaging and deep learning reconstruction. Magnetic Resonance in Medicine, 2022, 87, 2239-2253.	3.0	13
2	Ultrafast water–fat separation using deep learning–based singleâ€shot MRI. Magnetic Resonance in Medicine, 2022, 87, 2811-2825.	3.0	6
3	Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 058702.	0.5	O
4	Singleâ€shot T ₂ mapping via multiâ€echoâ€train multiple overlappingâ€echo detachment planar imaging and multitask deep learning. Medical Physics, 2022, 49, 7095-7107.	3.0	6
5	Singleâ€step calculation of susceptibility through multiple orientation sampling. NMR in Biomedicine, 2021, 34, e4517.	2.8	3
6	Boosting C3-alcohol electrooxidations by co-fueling with formic acid: A real-time quantitative nuclear magnetic resonance spectroelectrochemical study. Journal of Catalysis, 2021, 404, 551-559.	6.2	1
7	Revealing weak histidine 15N homonuclear scalar couplings using Solid-State Magic-Angle-Spinning NMR spectroscopy. Journal of Magnetic Resonance, 2020, 316, 106757.	2.1	3
8	Fast chemical exchange saturation transfer imaging based on PROPELLER acquisition and deep neural network reconstruction. Magnetic Resonance in Medicine, 2020, 84, 3192-3205.	3.0	12
9	Super-resolved water/fat image reconstruction based on single-shot spatiotemporally encoded MRI. Journal of Magnetic Resonance, 2020, 314, 106736.	2.1	2
10	NMR Spectroelectrochemistry in Studies of Dopamine Oxidation. Electrochemistry, 2020, 88, 200-204.	1.4	8
11	Highâ€resolution creatine mapping of mouse brain at 11.7 T using nonâ€steadyâ€state chemical exchange saturation transfer. NMR in Biomedicine, 2019, 32, e4168.	2.8	29
12	Robust Single-Shot T ₂ Mapping via Multiple Overlapping-Echo Acquisition and Deep Neural Network. IEEE Transactions on Medical Imaging, 2019, 38, 1801-1811.	8.9	23
13	Ultrafast multi-slice chemical exchange saturation transfer imaging scheme based on segmented spatiotemporal encoding. Magnetic Resonance Imaging, 2019, 60, 122-129.	1.8	7
14	Fast quantitative susceptibility reconstruction via total field inversion with improved weighted L 0 norm approximation. NMR in Biomedicine, 2019, 32, e4067.	2.8	3
15	High-resolution two-dimensional 1H J-resolved MRS measurements on in vivo samples. Journal of Magnetic Resonance, 2019, 300, 51-60.	2.1	1
16	Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. NeuroImage, 2019, 188, 380-390.	4.2	50
17	A Single-Scan Inhomogeneity-Tolerant NMR Method for High-Resolution Two-Dimensional J-Resolved Spectroscopy. IEEE Transactions on Biomedical Engineering, 2019, 66, 1559-1566.	4.2	3
18	Altered brain iron content and deposition rate in Huntington's disease as indicated by quantitative susceptibility MRI. Journal of Neuroscience Research, 2019, 97, 467-479.	2.9	45

#	Article	IF	CITATIONS
19	Singleâ€shot T ₂ mapping using overlappingâ€echo detachment planar imaging and a deep convolutional neural network. Magnetic Resonance in Medicine, 2018, 80, 2202-2214.	3.0	61
20	NMR spectroelectrochemistry in studies of hydroquinone oxidation by polyaniline thin films. Electrochimica Acta, 2018, 273, 300-306.	5.2	22
21	Separating fast and slow exchange transfer and magnetization transfer using offâ€resonance variableâ€delay multipleâ€pulse (VDMP) MRI. Magnetic Resonance in Medicine, 2018, 80, 1568-1576.	3.0	34
22	Single-Scan High-Resolution 2-D \$J\$ -Resolved Spectroscopy in Inhomogeneous Magnetic Fields. IEEE Transactions on Biomedical Engineering, 2018, 65, 440-448.	4.2	2
23	Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging. Nanoscale, 2018, 10, 3631-3638.	5.6	54
24	Motionâ€tolerant diffusion mapping based on singleâ€shot overlappingâ€echo detachment (OLED) planar imaging. Magnetic Resonance in Medicine, 2018, 80, 200-210.	3.0	13
25	Freshness assessment of intact fish via 2D 1H J-resolved NMR spectroscopy combined with pattern recognition methods. Sensors and Actuators B: Chemical, 2018, 255, 348-356.	7.8	19
26	The electrochemical oxidation of hydroquinone and catechol through polyaniline and poly(aspartic) Tj ETQq0 0 (O rgBJ /Ov	erlock 10 Tf 5
27	Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method. Chinese Physics B, 2018, 27, 088701.	1.4	1
28	Accelerating multi-slice spatiotemporally encoded MRI with simultaneous echo refocusing. Journal of Magnetic Resonance, 2018, 296, 12-22.	2.1	1
29	Referenceless distortion correction of gradient-echo echo-planar imaging under inhomogeneous magnetic fields based on a deep convolutional neural network. Computers in Biology and Medicine, 2018, 100, 230-238.	7.0	10
30	A fast chemical exchange saturation transfer imaging scheme based on single-shot spatiotemporal encoding. Magnetic Resonance in Medicine, 2017, 77, 1786-1796.	3.0	7
31	Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer. Journal of Chemical Physics, 2017, 146, 014202.	3.0	4
32	Single-Shot \${ext{T}}_{{2}}\$ Mapping Through OverLapping-Echo Detachment (OLED) Planar Imaging. IEEE Transactions on Biomedical Engineering, 2017, 64, 2450-2461.	4.2	18
33	Ultrahigh-Resolution NMR Spectroscopy for Rapid Chemical and Biological Applications in Inhomogeneous Magnetic Fields. Analytical Chemistry, 2017, 89, 7115-7122.	6.5	15
34	A method for longitudinal relaxation time measurement in inhomogeneous fields. Journal of Magnetic Resonance, 2017, 281, 118-124.	2.1	1
35	1 H NMR-based compositional identification of different powdered infant formulas. Food Chemistry, 2017, 230, 164-173.	8.2	17
36	Metabolomic responses of Haliotis diversicolor to organotin compounds. Chemosphere, 2017, 168, 860-869.	8.2	29

#	Article	IF	CITATIONS
37	Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neurolmage, 2017, 147, 488-499.	4.2	14
38	Investigation of the contribution of total creatine to the CEST <i>Z</i> â€spectrum of brain using a knockout mouse model. NMR in Biomedicine, 2017, 30, e3834.	2.8	64
39	Comparison of direct 13 C and indirect 1 H-[13 C] MR detection methods for the study of dynamic metabolic turnover in the human brain. Journal of Magnetic Resonance, 2017, 283, 33-44.	2.1	12
40	General Two-Dimensional Absorption-Mode <i>J</i> -Resolved NMR Spectroscopy. Analytical Chemistry, 2017, 89, 12646-12651.	6.5	18
41	Metabolic responses of Haliotis diversicolor to Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 2017, 60, 265-274.	3.6	55
42	High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional <i>J</i> -resolved experiment. Journal of Chemical Physics, 2016, 144, 104202.	3.0	6
43	Ultrafast multidimensional nuclear magnetic resonance technique: A proof of concept based on inverse- <i>k</i> -space for convenient and efficient performance. Applied Physics Letters, 2016, 108, .	3.3	5
44	Variable density sampling and non-Cartesian super-resolved reconstruction for spatiotemporally encoded single-shot MRI. Journal of Magnetic Resonance, 2016, 272, 1-9.	2.1	3
45	Rapid reconstruction of quantitative susceptibility mapping via improved < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0057.gif" overflow="scroll" > < mml:msub > < mml:mrow > < mml:mo > 2, "< / mml:mo > < / mml:mrow > < mml:mrow > < mml:mn > 0 < / mml:mrow > < mml:mrow	/mm1:mn>	c/mml:mrovo
46	Ultrafast multi-slice spatiotemporally encoded MRI with slice-selective dimension segmented. Journal of Magnetic Resonance, 2016, 269, 138-145.	2.1	8
47	A 2D proton J-resolved NMR method for direct measurements on heterogeneous foods. Food Research International, 2016, 80, 70-77.	6.2	5
48	NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses. Science of the Total Environment, 2016, 545-546, 280-288.	8.0	51
49	A heteronuclear intermolecular single-quantum coherence scheme for high-resolution $2D < i > J < /i >$ -resolved $< sup > 1 < /sup > H$ NMR spectra in inhomogeneous magnetic fields. Molecular Physics, 2016, 114, 1520-1527.	1.7	1
50	High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields. Molecular Physics, 2015, 113, 3353-3361.	1.7	0
51	Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations. Journal of Chemical Physics, 2015, 143, 244201.	3.0	1
52	Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Physics, 2015, 143, 024201.	3.0	5
53	Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique. Chinese Physics B, 2015, 24, 108703.	1.4	1
54	Observation of true and pseudo NOE signals using CESTâ€MRI and CESTâ€MRS sequences with and without lipid suppression. Magnetic Resonance in Medicine, 2015, 73, 1615-1622.	3.0	43

#	Article	IF	CITATIONS
55	High-resolution NMR spectroscopy in inhomogeneous fields. Progress in Nuclear Magnetic Resonance Spectroscopy, 2015, 90-91, 1-31.	7. 5	29
56	Hadamard-encoded localized high-resolution NMR spectroscopy via intermolecular double-quantum coherences. Chemical Physics Letters, 2015, 622, 63-68.	2.6	1
57	A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples. Scientific Reports, 2015, 5, 8390.	3.3	25
58	Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction. Magnetic Resonance Imaging, 2015, 33, 503-515.	1.8	19
59	Super-resolved enhancing and edge deghosting (SEED) for spatiotemporally encoded single-shot MRI. Medical Image Analysis, 2015, 23, 1-14.	11.6	21
60	Spatially-encoded intermolecular single-quantum coherence method for high-resolution NMR spectra in inhomogeneous fields. Chemical Physics Letters, 2015, 634, 11-15.	2.6	8
61	Imaging with referenceless distortion correction and flexible regions of interest using single-shot biaxial spatiotemporally encoded MRI. NeuroImage, 2015, 105, 93-111.	4.2	14
62	Spatially Localized Two-Dimensional J-Resolved NMR Spectroscopy via Intermolecular Double-Quantum Coherences for Biological Samples at 7 T. PLoS ONE, 2015, 10, e0134109.	2.5	6
63	A Novel Detection Scheme for High-Resolution Two-Dimensional Spin-Echo Correlated Spectra in Inhomogeneous Fields. PLoS ONE, 2014, 9, e84032.	2.5	2
64	Localised two-dimensional correlated spectroscopy based on Hadamard encoding technique. Molecular Physics, 2014, 112, 2602-2607.	1.7	0
65	Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields. Chinese Physics B, 2014, 23, 063201.	1.4	2
66	Hadamard-encoded high-resolution NMR spectroscopy via intermolecular single-quantum coherences. Chemical Physics, 2014, 444, 61-65.	1.9	4
67	High-Resolution Two-Dimensional J-Resolved NMR Spectroscopy for Biological Systems. Biophysical Journal, 2014, 106, 2061-2070.	0.5	29
68	High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations. Journal of Magnetic Resonance, 2014, 242, 49-56.	2.1	10
69	Fast high-resolution J-resolved correlation spectroscopy in inhomogeneous fields. Chemical Physics Letters, 2014, 616-617, 199-204.	2.6	3
70	HRJCOSY: A three-dimensional NMR method for measuring complex samples in inhomogeneous magnetic fields. Chemical Physics Letters, 2014, 609, 21-25.	2.6	2
71	Fast 3D gradient shimming by only 2×2 pixels in XY plane for NMR-solution samples. Journal of Magnetic Resonance, 2014, 248, 13-18.	2.1	6
72	NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	13

#	Article	IF	Citations
73	Chemical exchange saturation transfer MRI using intermolecular double-quantum coherences with multiple refocusing pulses. Magnetic Resonance Imaging, 2014, 32, 759-765.	1.8	3
74	Ultrafast localized twoâ€dimensional magnetic resonance correlated spectroscopy via spatially encoded technique. Magnetic Resonance in Medicine, 2014, 71, 903-910.	3.0	5
75	High-Resolution 1H NMR Spectroscopy of Fish Muscle, Eggs and Small Whole Fish via Hadamard-Encoded Intermolecular Multiple-Quantum Coherence. PLoS ONE, 2014, 9, e86422.	2.5	26
76	Partial Fourier transform reconstruction for singleâ€shot MRI with linear frequencyâ€swept excitation. Magnetic Resonance in Medicine, 2013, 69, 1326-1336.	3.0	42
77	Intermolecular Zero Quantum Coherence in NMR Spectroscopy. Annual Reports on NMR Spectroscopy, 2013, 78, 209-257.	1.5	4
78	Metabolomic Profilings of Urine and Serum from High Fat-Fed Rats via 1H NMR Spectroscopy and Pattern Recognition. Applied Biochemistry and Biotechnology, 2013, 169, 1250-1261.	2.9	19
79	Fast high-resolution 2D NMR spectroscopy in inhomogeneous fields via Hadamard frequency encoding and spatial encoding. Chemical Physics Letters, 2013, 582, 148-153.	2.6	10
80	Intermolecular double-quantum coherence imaging without coherence selection gradients and its application in in vivo MRI. Magnetic Resonance Imaging, 2013, 31, 515-523.	1.8	1
81	Hadamard encoded 2D correlation spectroscopy in inhomogeneous fields. Chemical Physics Letters, 2013, 563, 102-106.	2.6	2
82	Ultrafast acquisition of localized two-dimensional magnetic resonance correlated spectra of inhomogeneous biological tissues with resolution improvements. Chemical Physics Letters, 2013, 581, 96-102.	2.6	18
83	In vivo spatially localized high resolution ¹ H MRS via intermolecular singleâ€quantum coherence of rat brain at 7 T. Journal of Magnetic Resonance Imaging, 2013, 37, 359-364.	3.4	3
84	An aliasing artifacts reducing approach with random undersampling for spatiotemporally encoded single-shot MRI. Journal of Magnetic Resonance, 2013, 237, 115-124.	2.1	28
85	Ultrafast 1H J-resolved spectroscopy via 2H distant dipolar field in magnetic fields with unknown spatial variations. Chemical Physics Letters, 2013, 587, 99-104.	2.6	2
86	Spatially encoded ultrafast high-resolution 2D homonuclear correlation spectroscopy in inhomogeneous fields. Journal of Magnetic Resonance, 2013, 227, 39-45.	2.1	27
87	An efficient de-convolution reconstruction method for spatiotemporal-encoding single-scan 2D MRI. Journal of Magnetic Resonance, 2013, 228, 136-147.	2.1	35
88	Brown adipose tissue mapping in rats with combined intermolecular doubleâ€quantum coherence and Dixon water–fat MRI. NMR in Biomedicine, 2013, 26, 1663-1671.	2.8	19
89	Positive Contrast Imaging of SPIO Nanoparticles. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	14
90	Flat pancake distant dipolar fields for enhancement of intermolecular multiple-quantum coherence signals. Journal of Chemical Physics, 2012, 136, 094503.	3.0	1

#	Article	IF	Citations
91	Undersampled MRI reconstruction with patch-based directional wavelets. Magnetic Resonance Imaging, 2012, 30, 964-977.	1.8	196
92	Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data. Chemometrics and Intelligent Laboratory Systems, 2012, 112, 33-40.	3.5	7
93	High-resolution absorptive intermolecular multiple-quantum coherence NMR spectroscopy under inhomogeneous fields. Journal of Magnetic Resonance, 2012, 214, 289-295.	2.1	8
94	Highâ€resolution NMR spectroscopy in inhomogeneous fields via Hadamardâ€encoded intermolecular doubleâ€quantum coherences. NMR in Biomedicine, 2012, 25, 1088-1094.	2.8	14
95	Apparent diffusion behaviors of spins in the presence of distant dipolar field in two-component solution NMR. Molecular Physics, 2011, 109, 1943-1952.	1.7	1
96	High-Resolution 2D <i>J</i> -Resolved Spectroscopy in Inhomogeneous Fields with Two Scans. Journal of the American Chemical Society, 2011, 133, 7632-7635.	13.7	32
97	A new solvent suppression method via radiation damping effect. Chinese Physics B, 2011, 20, 118201.	1.4	3
98	Accurate Measurement of Small J Couplings. Annual Reports on NMR Spectroscopy, 2011, , 157-183.	1.5	3
99	Fast high-resolution 2D correlation spectroscopy in inhomogeneous fields via Hadamard intermolecular multiple quantum coherences technique. Journal of Magnetic Resonance, 2011, 211, 162-169.	2.1	7
100	High-resolution 2D NMR spectra in inhomogeneous fields based on intermolecular multiple-quantum coherences with efficient acquisition schemes. Journal of Magnetic Resonance, 2011, 208, 87-94.	2.1	9
101	Multinuclear nuclear magnetic resonance and density functional theoretical studies on the structure of bisperoxovanadium complexes with bidentate donors. Inorganica Chimica Acta, 2011, 365, 119-126.	2.4	4
102	High-resolution MR spectroscopy via intermolecular double-quantum coherences in inhomogeneous BO and B1 fields. Magnetic Resonance Imaging, 2011, 29, 601-607.	1.8	1
103	Detection and characterization of intermolecular multiple-quantum coherence NMR signals of IS (I=1/2; S=3/2) spin systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 1051-1057.	3.9	2
104	High-resolution NMR spectroscopy in unstable and inhomogeneous fields via stroboscopic acquisition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 112-117.	3.9	3
105	Reconstruction of Self-Sparse 2D NMR Spectra from Undersampled Data in the Indirect Dimension. Sensors, 2011, 11, 8888-8909.	3.8	39
106	Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance. Chinese Physics B, 2011, 20, 103301.	1.4	2
107	Identification of biochemical changes in lactovegetarian urine using 1H NMR spectroscopy and pattern recognition. Analytical and Bioanalytical Chemistry, 2010, 396, 1451-1463.	3.7	77
108	Homonuclear decoupled proton NMR spectra in modest to severe inhomogeneous fields via distant dipolar interactions. Chemical Physics Letters, 2010, 492, 174-178.	2.6	7

#	Article	IF	Citations
109	Spectroscopic and theoretical study on the interaction between diperoxovanadate complexes and glycyl-histidine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 825-831.	3.9	1
110	Highly efficient square wave distant dipolar field and its application for in vivo MRI. Magnetic Resonance in Medicine, 2010, 64, 1128-1134.	3.0	4
111	Multinuclear NMR and theoretical investigation on interactions between diperoxovanadate complex and 4-picoline-like ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 83-87.	3.9	1
112	Intermolecular single-quantum coherence sequences for high-resolution NMR spectra in inhomogeneous fields. Journal of Magnetic Resonance, 2010, 203, 100-107.	2.1	27
113	Ultrafast 2D COSY with constant-time phase-modulated spatial encoding. Journal of Magnetic Resonance, 2010, 204, 82-90.	2.1	27
114	High-resolution two-dimensional correlation spectroscopy in inhomogeneous fields: New application of intermolecular zero-quantum coherences. Journal of Chemical Physics, 2010, 132, 134507.	3.0	19
115	The structure, stability, and reactivity of oxalato-monoperoxovanadium(V) in solution. Journal of Coordination Chemistry, 2010, 63, 3268-3278.	2.2	3
116	Spectroscopic and DFT Study on the Interaction System of Vanadium with <scp>l</scp> -Proline in Aqueous Solution. Journal of Physical Chemistry A, 2010, 114, 5211-5216.	2.5	6
117	Entropic Contributions to the Atomic-Scale Charge-Carrier/Surface Interactions That Govern Macroscopic Surface Conductance. Journal of Physical Chemistry C, 2010, 114, 3991-3997.	3.1	5
118	An Intermolecular Single-Quantum Coherence Detection Scheme for High-Resolution Two-Dimensional <i>J</i> -resolved Spectroscopy in Inhomogeneous Fields. Applied Spectroscopy, 2010, 64, 235-240.	2.2	11
119	High-resolution magnetic resonance spectroscopy in unstable fields via intermolecular zero-quantum coherences. Physical Chemistry Chemical Physics, 2010, 12, 6014.	2.8	6
120	Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Problems in Science and Engineering, 2010, 18, 737-758.	1.2	131
121	High-resolution NMR spectra in inhomogeneous and unstable fields via the three-pulse method. Molecular Physics, 2010, 108, 1869-1875.	1.7	5
122	Signal Reconstruction in Unstable Magnetic Field NMR with Wavelet Analysis., 2009,,.		0
123	Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences. Journal of Chemical Physics, 2009, 130, 084504.	3.0	35
124	Theoretical investigation on multinuclear NMR chemical shifts of some tris(trifluoromethyl)boron complexes. Magnetic Resonance in Chemistry, 2009, 47, 629-634.	1.9	3
125	Advances in high-resolution nuclear magnetic resonance methods in inhomogeneous magnetic fields using intermolecular multiple quantum coherences. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 58-69.	0.2	4
126	Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 393, 1657-1668.	3.7	40

#	Article	IF	CITATIONS
127	Investigation on the complex of diperoxovanadate with picolinamide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 965-969.	3.9	9
128	Intermolecular double-quantum coherence NMR spectroscopy in moderate inhomogeneous fields. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1138-1144.	3.9	6
129	High-resolution NMR spectroscopy in inhomogeneous fields via heteronuclear intermolecular multiple-quantum coherences. Chemical Physics Letters, 2009, 471, 331-336.	2.6	9
130	Harmonic peaks in 1D NMR spectra induced by radiation damping fields. Chemical Physics Letters, 2009, 479, 165-170.	2.6	3
131	Observation and characterization of NMR signals in spin-1 system based on intermolecular multiple-quantum coherences. Chemical Physics Letters, 2009, 481, 130-136.	2.6	3
132	Study on structural variation of oxalate-oxodiperoxovanadate(V) from solid state to solution using NMR spectroscopy and theoretical calculation. Inorganic Chemistry Communication, 2009, 12, 1259-1262.	3.9	7
133	High-Resolution <i>J</i> -Scaling Nuclear Magnetic Resonance Spectra in Inhomogeneous Fields via Intermolecular Multiple-Quantum Coherences. Applied Spectroscopy, 2009, 63, 585-590.	2.2	5
134	1H NMR-Based Metabonomics Study of Urine and Serum Samples from Diabetic db/db Mice. , 2009, , .		0
135	High-Resolution Solution NMR Spectra in Inhomogeneous Magnetic Fields. Current Analytical Chemistry, 2009, 5, 70-83.	1.2	2
136	SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences. Comptes Rendus Physique, 2008, 9, 119-126.	0.9	29
137	Spectroscopic and theoretical study on the interaction between diperoxovanadate and oxazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 117-122.	3.9	8
138	NMR and theoretical study on interactions between diperoxovanadate complex and 4-substituted pyridines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 644-649.	3.9	7
139	Application of the forward linear prediction on high-resolution NMR spectra in inhomogeneous fields. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1027-1031.	3.9	1
140	Accurate measurements of small J coupling constants under inhomogeneous fields via intermolecular multiple-quantum coherences. Journal of Magnetic Resonance, 2008, 190, 298-306.	2.1	16
141	High-resolution NMR spectra in inhomogeneous fields utilizing the CRAZED sequence without coherence selection gradients. Journal of Magnetic Resonance, 2008, 193, 94-101.	2.1	8
142	Intermolecular multiple-quantum coherences between spin 1/2 and quadrupolar nuclei in liquid nuclear magnetic resonance. Chemical Physics Letters, 2008, 458, 368-372.	2.6	7
143	Crystal structure of ammonium (picolinamide)oxodiperoxovanadate(V) monohydrate, NH4[VO(O2)2(C6H6N2O)] Á·H2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2008, 223, 449-450.	0.3	0
144	High-resolution intermolecular zero-quantum coherence spectroscopy under inhomogeneous fields with effective solvent suppression. Physical Chemistry Chemical Physics, 2007, 9, 6231.	2.8	31

#	Article	IF	CITATIONS
145	Possible Dual-Charge-Carrier Mechanism of Surface Conduction on Î ³ -Alumina. Journal of Physical Chemistry C, 2007, 111, 5506-5513.	3.1	11
146	Simultaneous acquisition and effective separation of intermolecular multiple-quantum signals of different orders. Chemical Physics Letters, 2007, 438, 308-314.	2.6	6
147	Apparent longitudinal relaxation in solutions with intermolecular dipolar interactions and slow chemical exchange. Chemical Physics Letters, 2007, 446, 223-227.	2.6	5
148	Chaos suppression by feedback control in nuclear magnetic resonance. Physica B: Condensed Matter, 2007, 396, 57-61.	2.7	3
149	Interactions of methane, ethane and pentane with the (110C) surface of \hat{I}^3 -alumina. Journal of Molecular Catalysis A, 2007, 275, 63-71.	4.8	9
150	Modeling and simulation of magnetic resonance imaging based on intermolecular multiple quantum coherences., 2006,,.		0
151	Suppression of undesired peaks due to residual intermolecular dipolar interactions in liquid NMR. Chemical Physics Letters, 2006, 417, 48-52.	2.6	7
152	Formation and identification of pure intermolecular zero-quantum coherence signal in liquid NMR. Chemical Physics Letters, 2006, 421, 171-178.	2.6	9
153	Double-quantum-filtered intermolecular single-quantum coherences in nuclear magnetic resonance spectroscopy and imaging. Chemical Physics Letters, 2006, 429, 611-616.	2.6	8
154	Investigation on the interactions between diperoxovanadate and substituted phenanthroline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 255-263.	3.9	5
155	Multinuclear NMR spectroscopic and theoretical study on the interactions between diperoxovanadate complex and picoline-like ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 616-622.	3.9	13
156	Adsorption of 1-hexene on \hat{I}^3 -alumina (110C). Journal of Molecular Catalysis A, 2006, 248, 76-83.	4.8	7
157	Numerical Simulations of Contribution of Chemical Shift in Novel Magnetic Resonance Imaging. Lecture Notes in Computer Science, 2006, , 374-383.	1.3	3
158	A simulation algorithm based on Bloch equations and product operator matrix: application to dipolar and scalar couplings. Journal of Magnetic Resonance, 2005, 172, 242-253.	2.1	40
159	Selection of intra- or inter-molecular multiple-quantum coherences in NMR of highly polarized solution. Physica B: Condensed Matter, 2005, 362, 286-294.	2.7	4
160	Finite difference simulation of diffusion behaviors under inter- and intra-molecular multiple-quantum coherences in liquid NMR. Chemical Physics Letters, 2005, 407, 438-443.	2.6	10
161	Investigation on the complex of diperoxovanadate with 2-(2′-pyridyl)-imidazole. Journal of Inorganic Biochemistry, 2005, 99, 1945-1951.	3.5	28
162	Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences. Physica B: Condensed Matter, 2005, 366, 127-137.	2.7	4

#	Article	lF	CITATIONS
163	NMR and Theoretical Study on the Coordination and Solution Structures of the Interaction between Diperoxovanadate Complexes and Histidine-like Ligands. Inorganic Chemistry, 2005, 44, 6755-6762.	4.0	24
164	Theoretical formalism and experimental verification of line shapes of NMR intermolecular multiple-quantum coherence spectra. Journal of Chemical Physics, 2005, 123, 074317.	3.0	13
165	Spectroscopic studies on the interactions between a bioactive diperoxovanadate complex and pyridine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 391-396.	3.9	21
166	Phase transformation mechanism between \hat{l}^3 - and \hat{l}_5 -alumina. Physical Review B, 2003, 67, .	3.2	81
167	Theoretical study on19F magnetic shielding constants of some metal fluorides. Magnetic Resonance in Chemistry, 2003, 41, 902-907.	1.9	15
168	Adsorption of alcohols on \hat{I}^3 -alumina (1 1 0 C). Journal of Molecular Catalysis A, 2003, 193, 157-164.	4.8	62
169	Synthesis and Spectroscopic Characterizations of an Insulinomimetic Peroxovanadate Complex in Aqueous Solution. Chinese Journal of Chemistry, 2003, 21, 746-750.	4.9	6
170	Migration of Aluminum Atoms in the Transformation of $\hat{l}^3\hat{a}$ "to $\hat{l}_3\hat{a}$ "Alumina. Materials Research Society Symposia Proceedings, 2002, 731, 361.	0.1	0
171	Theoretical Investigation of 19F NMR Chemical Shielding of Alkaline-Earth-Metal and Alkali-Metal Fluorides. Journal of Physical Chemistry A, 2002, 106, 1060-1066.	2.5	27
172	19F NMR chemical shielding for metal fluorides MF2 (M=Zn, Cd, Pb), MF3 (M=Al, Ga, In) and SnF4. Chemical Physics Letters, 2002, 362, 13-18.	2.6	14
173	Atomic Scale Mechanism of the Transformation of ³ -Alumina to ¹ ,-Alumina. Physical Review Letters, 2002, 89, 235501.	7.8	45
174	Density functional model cluster study of adsorption of acetylene on magnesium oxide. Surface Science, 2001, 479, 169-182.	1.9	5
175	<i>Ab Initio</i> calculation of ¹⁹ F NMR chemical shielding for alkalineâ€earthâ€metal fluorides. Chinese Journal of Chemistry, 2001, 19, 1179-1183.	4.9	0
176	An average-bond-energy method used for band-offset calculation for a strained heterojunction. Journal of Physics Condensed Matter, 2000, 12, 7759-7770.	1.8	1
177	Tungsten Atoms and Clusters Adsorbed on the MgO(001) Surface:Â A Density Functional Study. Journal of Physical Chemistry B, 2000, 104, 11506-11514.	2.6	14
178	NMR studies on [VS4–Cun] (n=3, 4, 5, 6) clusters. Polyhedron, 1999, 18, 1339-1343.	2.2	5
179	Ab initio calculations of 19FNMR chemical shielding for alkali-metal fluorides1Projects 19605004, 29892166 supported by National Natural Science Foundation of China, Natural Science Foundation of Fujian Province.1. Chemical Physics Letters, 1999, 302, 73-76.	2.6	21
180	Valence-band offsets of III-V alloy heterojunctions. Surface and Interface Analysis, 1999, 28, 177-180.	1.8	6

Shu-Hui Cai

#	Article	IF	CITATIONS
181	Storage capacity of the Hopfield neural network. Physica A: Statistical Mechanics and Its Applications, 1997, 246, 313-319.	2.6	3
182	Studies on the band structures of some low-temperature superconductors. International Journal of Quantum Chemistry, 1997, 64, 459-472.	2.0	0
183	Studies on the band structures of some layered transition metal dichalcogenides. Computational and Theoretical Chemistry, 1996, 362, 379-385.	1.5	8
184	Studies on the band structures of some Laves-phase compounds. Polyhedron, 1995, 14, 3537-3544.	2.2	3
185	Theoretical investigation on the band structures of several Chevrel-phase compounds. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 479.	1.7	8
186	Theoretical studies on the band structures of superconducting solid compounds: Nb ₃ X (X=Si, Ge, Sn, Pb). Chinese Journal of Chemistry, 1994, 12, 385-391.	4.9	4