Rathinam Karthik

List of Publications by Citations

Source: https://exaly.com/author-pdf/8506402/rathinam-karthik-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71 2,199 28 44 g-index

71 2,606 7 6.14 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
71	Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. <i>Chemical Engineering Journal</i> , 2015 , 263, 168-177	14.7	229
70	Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. <i>International Journal of Biological Macromolecules</i> , 2015 , 72, 711-7	7.9	135
69	Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. <i>International Journal of Biological Macromolecules</i> , 2014 , 67, 210-9	7.9	82
68	Removal of hexavalent chromium ions using polyaniline/silica gel composite. <i>Journal of Water Process Engineering</i> , 2014 , 1, 37-45	6.7	80
67	A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions. <i>International Journal of Biological Macromolecules</i> , 2014 , 64, 224-32	7.9	79
66	Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate. <i>International Journal of Biological Macromolecules</i> , 2014 , 69, 336-43	7.9	71
65	An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. <i>Carbohydrate Polymers</i> , 2018 , 199, 506-515	10.3	64
64	Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. <i>International Journal of Biological Macromolecules</i> , 2019 , 130, 407-418	7.9	61
63	Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions. <i>International Journal of Biological Macromolecules</i> , 2015 , 78, 157-64	7.9	61
62	Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. <i>International Journal of Biological Macromolecules</i> , 2018 , 112, 284-293	7.9	61
61	Polyimide derived laser-induced graphene as adsorbent for cationic and anionic dyes. <i>Carbon</i> , 2017 , 124, 515-524	10.4	58
60	Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-CN) incorporated chitosan as catalyst: Photocatalytic and adsorption studies. <i>International Journal of Biological Macromolecules</i> , 2019 , 132, 289-299	7.9	56
59	Enriched fluoride sorption using chitosan supported mixed metal oxides beads: Synthesis, characterization and mechanism. <i>Journal of Water Process Engineering</i> , 2014 , 2, 96-104	6.7	50
58	Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies. <i>Carbohydrate Polymers</i> , 2013 , 91, 631-7	10.3	50
57	Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. <i>International Journal of Biological Macromolecules</i> , 2015 , 72, 235-42	7.9	49
56	Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. <i>Carbohydrate Polymers</i> , 2016 , 145, 103-13	10.3	44
55	Exploitation of zinc oxide impregnated chitosan beads for the photocatalytic decolorization of an azo dye. <i>International Journal of Biological Macromolecules</i> , 2015 , 72, 900-10	7.9	43

(2021-2014)

Synthesis, characterization and Cr(VI) uptake studies of polypyrrole functionalized chitin. <i>Synthetic Metals</i> , 2014 , 198, 181-187	3.6	43	
Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution. <i>Powder Technology</i> , 2014 , 268, 306-315	5.2	43	
Removal of hexavalent chromium ions from aqueous solution using chitosan/polypyrrole composite. <i>Desalination and Water Treatment</i> , 2015 , 56, 1587-1600		42	
Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). <i>International Journal of Biological Macromolecules</i> , 2015 , 72, 1265-71	7.9	42	
Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. <i>International Journal of Biological Macromolecules</i> , 2017 , 104, 1586-1595	7.9	35	
A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. <i>Chemical Engineering Journal</i> , 2014 , 257, 45-55	14.7	35	
Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. <i>Applied Catalysis A: General</i> , 2015 , 503, 124-134	5.1	33	
Photocatalytic reduction of nitrate over AgIIiO 2 in the presence of oxalic acid. <i>Journal of Water Process Engineering</i> , 2015 , 8, e23-e30	6.7	32	
Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. <i>International Journal of Biological Macromolecules</i> , 2019 , 130, 527-535	7.9	31	
Adsorption study on removal of Cr(VI) ions by polyaniline composite. <i>Desalination and Water Treatment</i> , 2015 , 54, 3083-3093		30	
Calcium phosphate scaling during wastewater desalination on oligoamide surfaces mimicking reverse osmosis and nanofiltration membranes. <i>Water Research</i> , 2018 , 128, 217-225	12.5	28	
Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. <i>International Journal of Biological Macromolecules</i> , 2018 , 112, 294-305	7.9	27	
Defluoridation of water using synthesized Zr(IV) encapsulated silica gel/chitosan biocomposite: Adsorption isotherms and kinetic studies. <i>Desalination and Water Treatment</i> , 2015 , 53, 3592-3603		26	
Facile synthesis of chitosan-La-graphite composite and its influence in photocatalytic degradation of methylene blue. <i>International Journal of Biological Macromolecules</i> , 2019 , 133, 253-261	7.9	25	
Synthesis of metal ion entrapped silica gel/chitosan biocomposite for defluoridation studies. <i>International Journal of Biological Macromolecules</i> , 2014 , 70, 347-53	7.9	25	
Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method. <i>International Journal of Biological Macromolecules</i> , 2014 , 70, 399-407	7.9	24	
Facile synthesis of metal incorporated chitin for the recovery of oil from oil-in-water emulsion using adsorptive method. <i>Journal of Cleaner Production</i> , 2016 , 139, 1339-1350	10.3	23	
Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. <i>Carbohydrate Polymers</i> , 2021 , 273, 118604	10.3	23	
	Metals, 2014, 198, 181-187 Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution. Powder Technology, 2014, 268, 306-315 Removal of hexavalent chromium ions from aqueous solution using chitosan/polypyrrole composite. Desalination and Water Treatment, 2015, 56, 1587-1600 Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 2015, 72, 1265-71 Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. International Journal of Biological Macromolecules, 2017, 104, 1586-1595 A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: Ceneral, 2015, 503, 124-134 Photocatalytic reduction of nitrate over Agllio 2 in the presence of oxalic acid. Journal of Water Process Engineering, 2015, 8, e23-e30 Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. International Journal of Biological Macromolecules, 2019, 130, 527-535 Adsorption study on removal of Cr(VI) ions by polyaniline composite. Desalination and Water Treatment, 2015, 54, 3083-3093 Calcium phosphate scaling during wastewater desalination on oligoamide surfaces mimicking reverse osmosis and nanofiltration membranes. Water Research, 2018, 128, 217-225 Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. International Journal of Biological Macromolecules, 2018, 112, 294-305 Defluoridation of water using synthesized Zr(IV) encapsulated silica gel/chitosan biocomposite: Adsorption isotherms an	Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution. Powder Technology, 2014, 268, 306-315 Removal of hexavalent chromium ions from aqueous solution using chitosan/polypyrrole composite. Desalination and Water Treatment, 2015, 56, 1587-1600 Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 2015, 72, 1265-71 Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. International Journal of Biological A novel quaternized resin with acrylontrile/divinythenzene/vinythenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 447 Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: General, 2015, 503, 124-134 Photocatalytic reduction of nitrate over AgliiO 2 in the presence of oxalic acid. Journal of Water Process Engineering, 2015, 8, e23-e30 Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention. International Journal of Biological Macromolecules, 2019, 130, 527-535 Adsorption study on removal of Cr(VI) ions by polyaniline composite. Desalination and Water Treatment, 2015, 54, 3083-3093 Calcium phosphate scaling during wastewater desalination on oligoamide surfaces mimicking reverse osmosis and nanofiltration membranes. Mater Research, 2018, 128, 217-225 Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers. Role of metal ions and their mechanism in oil removal. International Journal of Biological Macromolecules, 2019, 133, 253-260 Defluoridation of water using synthesized Zr(IV) encapsulated silica gel/chitosan biocomposite: Adsorption isotherms and kinetic studies. Desalination and Water Treatment, 2015, 53,	Synthesis of surface coated hydroxyapatike powders for fluoride removal from aqueous solution. Powder Technology, 2014, 268, 306-315 Removal of hexavalent chromium ions from aqueous solution using chitosan/polypyrrole composite. Desalination and Water Treatment, 2015, 56, 1587-1600 Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 2015, 72, 1265-71 Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. International Journal of Biological Macromolecules, 2017, 104, 1386-1395 A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 2014, 257, 45-55 A photocatalylic reduction of nitrate over Aglilo 2 in the presence of oxalic acid. Journal of Water Process Engineering, 2015, 8, e23-e30 Hydrothermal encapsulation of lanthanum oxide derived Aegie marmelos admixed chitosan bead system for nitrate and phosphate retention. International Journal of Biological Macromolecules, 2019, 130, 257-535 Adsorption study on removal of Cr(VI) ions by polyaniline composite. Desalination and Water Treatment, 2015, 54, 3083-3093 26 Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated bioodymers: Role of metal ions and their mechanism in oil removal. Internationa

36	Fabrication of nano-graphene oxide assisted hydrotalcite/chitosan biocomposite: An efficient adsorbent for chromium removal from water. <i>International Journal of Biological Macromolecules</i> , 2019 , 132, 1068-1078	7.9	21
35	Surface-Induced Silica Scaling during Brackish Water Desalination: The Role of Surface Charge and Specific Chemical Groups. <i>Environmental Science & Environmental Science & E</i>	10.3	20
34	In-situ fabrication of zirconium entrenched biopolymeric hybrid membrane for the removal of toxic anions from aqueous medium. <i>International Journal of Biological Macromolecules</i> , 2019 , 141, 1199-1209	7.9	19
33	Defluoridation of water by Tea-bag model using La(3+) modified synthetic resin@chitosan biocomposite. <i>International Journal of Biological Macromolecules</i> , 2016 , 91, 1002-9	7.9	19
32	Enhanced photocatalytic response of ZnO embedded chitosan/Etyclodextrin towards the detoxification of Cr(VI) under visible light. <i>International Journal of Biological Macromolecules</i> , 2020 , 147, 867-876	7.9	19
31	Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads. <i>International Journal of Biological Macromolecules</i> , 2014 , 70, 420-6	7.9	17
30	Biosorption of Pb(II) and Cd(II) ions from aqueous solution using polyaniline/chitin composite. <i>Separation Science and Technology</i> , 2016 , 51, 733-742	2.5	16
29	Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex. <i>International Journal of Biological Macromolecules</i> , 2016 , 85, 16-22	7.9	16
28	Defluoridation of water using chitosan assisted ethylenediamine functionalized synthetic polymeric blends. <i>International Journal of Biological Macromolecules</i> , 2014 , 70, 621-7	7.9	16
27	Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment. <i>Carbohydrate Polymers</i> , 2021 , 261, 117892	10.3	16
26	Complex interior and surface modified alginate reinforced reduced graphene oxide-hydroxyapatite hybrids: Removal of toxic azo dyes from the aqueous solution. <i>International Journal of Biological Macromolecules</i> , 2021 , 175, 361-371	7.9	15
25	Phosphate uptake studies on different types of lanthanum-loaded polymeric materials. <i>Environmental Progress and Sustainable Energy</i> , 2015 , 34, 146-154	2.5	14
24	Facile synthesis of Zr incorporated chitosan/gelatin composite for the sequestration of Chromium(VI) and fluoride from water. <i>Chemosphere</i> , 2021 , 262, 128317	8.4	14
23	Removal of toxic ions from aqueous solutions by surfactant-assisted biopolymeric hybrid membrane: Synthesis, characterization and toxic ions removal performance. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103717	6.8	13
22	Encapsulation of metal ions between the biopolymeric layer beads for tunable action on oil particles adsorption from oily wastewater. <i>Journal of Molecular Liquids</i> , 2018 , 255, 429-438	6	13
21	Hexavalent chromium ion and methyl orange dye uptake a silk protein sericin-chitosan conjugate <i>RSC Advances</i> , 2018 , 8, 27027-27036	3.7	13
20	In-situ fabrication of cerium incorporated chitosan-Eyclodextrin microspheres as an effective adsorbent for toxic anions removal. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2019 , 12, 100272	3.3	12
19	Environment responsive Al networked chitosan-gelatin spherical beads for the effective removal of organic pollutants from aqueous solutions. <i>International Journal of Biological Macromolecules</i> , 2020 164, 3055-3064	7.9	10

(2021-2020)

18	Mechanistic performance of organic pollutants removal from water using Zn/Al layered double hydroxides imprinted carbon composite. <i>Surfaces and Interfaces</i> , 2020 , 20, 100581	4.1	10
17	Synthesis, characterization, kinetics and modeling studies of new generation pollutant ketoprofen removal in water using copper nanoparticles. <i>Journal of Molecular Liquids</i> , 2021 , 323, 115075	6	9
16	Synthesis of magnetic chitosan biopolymeric spheres and their adsorption performances for PFOA and PFOS from aqueous environment. <i>Carbohydrate Polymers</i> , 2021 , 267, 118165	10.3	8
15	Efficacy of La3+ entrapped chitosan bio-polymeric matrix for the recovery of oil from oil-in-water emulsion. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	7
14	Synthesis and characterization of magnetic chitin composite and its application towards the uptake of Pb(II) and Cd(II) ions from aqueous solution. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, S288-S297	2.5	7
13	Facile Fabrication of Metal Ions-Incorporated Chitosan/ECyclodextrin Composites for Effective Removal of Oil from Oily Wastewater. <i>ChemistrySelect</i> , 2017 , 2, 11393-11401	1.8	6
12	Adsorption Behavior of Cutting Oil on Lanthanum Coordinated Chitosan Flakes from Oil-in-Water Emulsion. <i>Journal of Chitin and Chitosan Science</i> , 2015 , 3, 11-20		6
11	Photocatalytic performance of chitosan tethered magnetic FeO-like (3D/2D) hybrid for the dynamic removal of anionic dyes: Degradation and mechanistic pathways. <i>International Journal of Biological Macromolecules</i> , 2021 , 183, 2088-2099	7.9	6
10	Al3+ incorporated chitosan-gelatin hybrid microspheres and their use for toxic ions removal: Assessment of its sustainability metrics. <i>Environmental Chemistry and Ecotoxicology</i> , 2020 , 2, 97-106	3.9	5
9	Effective and selective removal of organic pollutants from aqueous solutions using 1D hydroxyapatite-decorated 2D reduced graphene oxide nanocomposite. <i>Journal of Molecular Liquids</i> , 2021 , 331, 115795	6	5
8	Zirconium oxide intercalated sodium montmorillonite scaffold as an effective adsorbent for the elimination of phosphate and hexavalent chromium ions. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106053	6.8	3
7	Effective utilization of the functional groups in chitosan by loading Zn(II) for the removal of nitrate and phosphate. <i>Desalination and Water Treatment</i> , 2014 , 1-10		1
6	Surface grafting with diverse charged chemical groups mitigates calcium phosphate scaling on reverse osmosis membranes during municipal wastewater desalination. <i>Journal of Membrane Science</i> , 2022 , 647, 120310	9.6	1
5	Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions <i>Materials</i> , 2021 , 14,	3.5	1
4	Influence of Carbon Agglomerate Formation on Micropollutants Removal in Combined PAC-Membrane Filtration Processes for Advanced Wastewater Treatment. <i>Water (Switzerland)</i> , 2021 , 13, 3578	3	1
3	Construction of ternary (1D/2D/3D) FeO-supported micro pillared Cu-based MOF on chitosan with improved photocatalytic behavior on removal of paraquat <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	
2	Removal of Chromium Ions from Water Using Eco-friendly Based Adsorbents. <i>Energy, Environment, and Sustainability,</i> 2020 , 445-474	0.8	
1	Application of g-C3N4-based Materials for the Efficient Removal and Degradation of Pollutants in Water and Wastewater Treatment. <i>Energy, Environment, and Sustainability</i> , 2021 , 95-119	0.8	