

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/85063/publications.pdf Version: 2024-02-01

RIN YU

#	Article	IF	CITATIONS
1	Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry, 2011, 21, 6494.	6.7	915
2	Highly Electrically Conductive Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193-11202.	7.3	671
3	What is the choice for supercapacitors: graphene or graphene oxide?. Energy and Environmental Science, 2011, 4, 2826.	15.6	666
4	Lithium storage in nitrogen-rich mesoporous carbon materials. Energy and Environmental Science, 2012, 5, 7950.	15.6	593
5	Advances in the Synthesis of 2D MXenes. Advanced Materials, 2021, 33, e2103148.	11.1	488
6	Selfâ€Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Advanced Materials, 2018, 30, e1707334.	11.1	467
7	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801149.	10.2	442
8	MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Letters, 2018, 3, 1597-1603.	8.8	389
9	Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. Journal of Materials Chemistry, 2012, 22, 19088.	6.7	373
10	Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016, 4, 6472-6478.	5.2	319
11	Extended "Adsorption–Insertion―Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. Advanced Energy Materials, 2019, 9, 1901351.	10.2	284
12	Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 20560-20566.	5.2	263
13	Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Materials Chemistry and Physics, 2010, 124, 504-509.	2.0	231
14	Facile synthesis of nitrogen-doped porous carbon for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 4565.	5.2	214
15	MXeneâ€Bonded Flexible Hard Carbon Film as Anode for Stable Na/Kâ€Ion Storage. Advanced Functional Materials, 2019, 29, 1906282.	7.8	214
16	Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes. Electrochemistry Communications, 2008, 10, 795-797.	2.3	207
17	Flexible 3D Porous MXene Foam for Highâ€Performance Lithiumâ€ion Batteries. Small, 2019, 15, e1904293.	5.2	204
18	Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochimica Acta, 2013, 98, 176-182.	2.6	195

#	Article	IF	CITATIONS
19	In Situ Ice Template Approach to Fabricate 3D Flexible MXene Filmâ€Based Electrode for High Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000922.	7.8	188
20	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27124-27130.	4.0	185
21	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
22	Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. Journal of Power Sources, 2010, 195, 2118-2124.	4.0	180
23	Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 2018, 12, 128-136.	9.5	167
24	3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Materials, 2020, 29, 163-171.	9.5	163
25	Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochimica Acta, 2009, 54, 1153-1159.	2.6	155
26	3D-0D Graphene-Fe ₃ O ₄ Quantum Dot Hybrids as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26878-26885.	4.0	152
27	Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. Journal of Power Sources, 2016, 319, 195-201.	4.0	150
28	Status and Prospects of MXeneâ€Based Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2100457.	7.8	147
29	Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity. Electrochimica Acta, 2008, 53, 7730-7735.	2.6	132
30	2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale, 2019, 11, 8442-8448.	2.8	130
31	From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon. Scientific Reports, 2014, 4, 7260.	1.6	128
32	Natural Biomass-Derived Hierarchical Porous Carbon Synthesized by an <i>in Situ</i> Hard Template Coupled with NaOH Activation for Ultrahigh Rate Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 13949-13959.	3.2	128
33	Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta, 2007, 52, 4595-4598.	2.6	125
34	Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. Journal of Power Sources, 2009, 191, 628-632.	4.0	122
35	Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy, 2017, 33, 402-409.	8.2	120
36	Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template. Journal of Materials Chemistry A, 2016, 4, 16341-16348.	5.2	116

#	Article	IF	CITATIONS
37	Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes. Bioresource Technology, 2019, 285, 121340.	4.8	116
38	Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. Journal of Materials Chemistry, 2011, 21, 18537.	6.7	114
39	Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 65.	14.4	112
40	Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction. Journal of Catalysis, 2019, 375, 399-409.	3.1	108
41	MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance. Nano-Micro Letters, 2021, 13, 202.	14.4	107
42	Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry, 2021, 55, 244-255.	7.1	104
43	Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon, 2010, 48, 2377-2380.	5.4	101
44	Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 2019, 19, 494-499.	4.5	101
45	Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. Journal of Power Sources, 2006, 158, 773-778.	4.0	98
46	Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. Journal of Materials Chemistry A, 2015, 3, 7849-7854.	5.2	97
47	Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. Journal of Power Sources, 2018, 405, 132-141.	4.0	97
48	An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. Journal of Materials Chemistry A, 2019, 7, 21766-21773.	5.2	97
49	A mini-review on MXenes as versatile substrate for advanced sensors. Chinese Chemical Letters, 2020, 31, 922-930.	4.8	94
50	The recent progress of pitch-based carbon anodes in sodium-ion batteries. Journal of Energy Chemistry, 2021, 55, 34-47.	7.1	94
51	Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 52, 243-250.	7.1	93
52	Ultramicroporous carbon as electrode material for supercapacitors. Journal of Power Sources, 2013, 228, 193-197.	4.0	90
53	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. Advanced Energy Materials, 2022, 12, .	10.2	88
54	Insights into Lithium and Sodium Storage in Porous Carbon. Nano Letters, 2020, 20, 3836-3843.	4.5	86

Вім Хи

#	Article	IF	CITATIONS
55	Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chemical Communications, 2016, 52, 11512-11515.	2.2	85
56	Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon, 2011, 49, 1884-1893.	5.4	81
57	Recent Advances in Heterostructured Carbon Materials as Anodes for Sodiumâ€Ion Batteries. Small Structures, 2021, 2, .	6.9	80
58	Flexible MXene Framework as a Fast Electron/Potassiumâ€lon Dualâ€Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes. Advanced Functional Materials, 2021, 31, 2102126.	7.8	77
59	Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. Journal of Materials Chemistry A, 2017, 5, 9572-9579.	5.2	75
60	Threeâ€Ðimensional MXenes for Supercapacitors: A Review. Small Methods, 2022, 6, e2101537.	4.6	75
61	Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells. Chemical Engineering Journal, 2020, 393, 124675.	6.6	74
62	Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries. Electrochimica Acta, 2011, 56, 6464-6468.	2.6	73
63	Application of MXenes in environmental remediation technologies. Nano Convergence, 2021, 8, 5.	6.3	73
64	Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. Journal of Materials Science, 2020, 55, 1148-1156.	1.7	71
65	Plate-to-Layer Bi2MoO6/MXene-Heterostructured Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 81.	14.4	70
66	MXenes: From Discovery to Applications. Advanced Functional Materials, 2020, 30, 2007011.	7.8	70
67	A Flexible Si@C Electrode with Excellent Stability Employing an MXene as a Multifunctional Binder for Lithiumâ€ion Batteries. ChemSusChem, 2020, 13, 1621-1628.	3.6	69
68	Recent advances in interlayer and separator engineering for lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 57, 41-60.	7.1	68
69	High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs. Electrochimica Acta, 2009, 54, 2185-2189.	2.6	67
70	Si/mesoporous carbon composite as an anode material for lithium ion batteries. Journal of Alloys and Compounds, 2013, 552, 60-64.	2.8	67
71	"Waterâ€inâ€Salt―Electrolytes for Supercapacitors: A Review. ChemSusChem, 2021, 14, 2501-2515.	3.6	67
72	Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. Journal of Membrane Science, 2019, 591, 117323.	4.1	66

#	Article	IF	CITATIONS
73	The suppression of lithium dendrite growth in lithium sulfur batteries: A review. Journal of Energy Storage, 2017, 13, 387-400.	3.9	64

An activation-free method for preparing microporous carbon by the pyrolysis of poly(vinylidene) Tj ETQq0 0 0 rgBT $\frac{10}{5.4}$ Overlock 10 Tf 50 70 $\frac{10}{5.4}$

75	Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder. Carbon, 2018, 137, 475-483.	5.4	63
76	Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Applied Surface Science, 2015, 332, 40-46.	3.1	62
77	Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Letters, 2020, 12, 89.	14.4	61
78	A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries. Applied Surface Science, 2018, 440, 770-777.	3.1	59
79	Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Applied Surface Science, 2018, 440, 748-754.	3.1	57
80	Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. Journal of Electroanalytical Chemistry, 2014, 712, 146-150.	1.9	54
81	Highly loaded SnO 2 /mesoporous carbon nanohybrid with well-improved lithium storage capability. Journal of Power Sources, 2014, 247, 178-183.	4.0	52
82	Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11205-11213.	5.2	51
83	Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte. International Journal of Hydrogen Energy, 2010, 35, 632-637.	3.8	50
84	Microorganism-moulded pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /C nanocomposite for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9982-9990.	5.2	50
85	Confined Growth of Nano-Na ₃ V ₂ (PO ₄) ₃ in Porous Carbon Framework for High-Rate Na-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 3107-3115.	4.0	50
86	A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15605-15611.	5.2	48
87	LiFePO4/activated carbon/graphene composite with capacitive-battery characteristics for superior high-rate lithium-ion storage. Electrochimica Acta, 2019, 294, 148-155.	2.6	47
88	Novel Binary Room-Temperature Complex System Based on LiTFSI and 2-Oxazolidinone and Its Characterization as Electrolyte. Journal of Physical Chemistry C, 2007, 111, 5184-5194.	1.5	46
89	Ultrafine Au nanoparticles anchored on Bi ₂ MoO ₆ with abundant surface oxygen vacancies for efficient oxygen molecule activation. Catalysis Science and Technology, 2019, 9, 3193-3202.	2.1	46
90	Easy synthesis of a high surface area, hierarchical porous carbon for high-performance supercapacitors. RSC Advances, 2013, 3, 17500.	1.7	45

#	Article	IF	CITATIONS
91	Nitrogen-doped hierarchical porous carbon for supercapacitors with high rate performance. Microporous and Mesoporous Materials, 2019, 279, 439-445.	2.2	45
92	MXene derivatives for energy storage applications. Sustainable Energy and Fuels, 2020, 4, 4988-5004.	2.5	45
93	Emulsion template synthesis of all conducting polymer aerogels with superb adsorption capacity and enhanced electrochemical capacitance. Journal of Materials Chemistry, 2012, 22, 8579.	6.7	44
94	NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen. Sensors and Actuators B: Chemical, 2021, 328, 129074.	4.0	44
95	Microcrystalline Hybridization Enhanced Coalâ€Based Carbon Anode for Advanced Sodiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200023.	5.6	43
96	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	5.8	42
97	Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10882-10889.	4.0	36
98	Electrospun Coal Liquefaction Residues/Polyacrylonitrile Composite Carbon Nanofiber Nonwoven Fabrics as High-Performance Electrodes for Lithium/Potassium Batteries. Energy & Fuels, 2020, 34, 2445-2451.	2.5	36
99	Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochimica Acta, 2018, 269, 282-290.	2.6	35
100	Hierarchical porous carbon prepared by NaOH activation of nano-CaCO3templated carbon for high rate supercapacitors. New Journal of Chemistry, 2014, 38, 5509-5514.	1.4	31
101	Novel Binary Room-Temperature Complex Electrolytes Based on LiTFSI and Organic Compounds with Acylamino Group. Journal of the Electrochemical Society, 2005, 152, A1979.	1.3	30
102	A simple method for preparing porous carbon by PVDC pyrolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 85-88.	2.3	30
103	Single-walled Carbon Nanotubes as Electrode Materials for Supercapacitors. Chinese Journal of Chemistry, 2006, 24, 1505-1508.	2.6	29
104	Interface-Engineered Fe ₃ O ₄ /MXene Heterostructures for Enhanced Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 11844-11853.	2.5	28
105	Enhanced inhibitive performance of fluoro-substituted imidazolium-based ionic liquid for mild steel corrosion in hydrochloric acid at elevated temperature. Journal of Materials Science, 2018, 53, 14666-14680.	1.7	27
106	Nano-Sn/Mesoporous Carbon Parasitic Composite as Advanced Anode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2012, 159, A2092-A2095.	1.3	25
107	In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions. Journal of Materials Science and Technology, 2022, 110, 152-160.	5.6	24
108	3D crumbled MXene for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 2305-2308.	4.8	23

#	Article	IF	CITATIONS
109	Binary Complex Electrolytes Based on LiX[X=N(SO[sub 2]CF[sub 3])[sub 2][sup â^'], CF[sub 3]SO[sub 3][sup â^'], ClO[sub 4][sup â^']]-Acetamide for Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2007, 154, A703.	1.3	22
110	FePO4 nanoparticles embedded in a large mesoporous carbon matrix as a high-capacity and high-rate cathode for lithium-ion batteries. Electrochimica Acta, 2013, 92, 433-437.	2.6	22
111	High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries. Applied Surface Science, 2019, 481, 1459-1465.	3.1	22
112	Structurally designed heterochain polymer derived porous carbons with high surface area for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147296.	3.1	20
113	Alkali-Induced Porous MXene/Carbon Nanotube-Based Film Electrodes for Supercapacitors. ACS Applied Nano Materials, 2022, 5, 4180-4186.	2.4	20
114	Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors. Materials Letters, 2014, 131, 49-52.	1.3	18
115	A green Al2O3 metal oxide coating method for LiNi0.5Co0.2Mn0.3O2 cathode material to improve the high voltage performance. Journal of Alloys and Compounds, 2020, 832, 153788.	2.8	18
116	The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors. New Carbon Materials, 2013, 28, 151-154.	2.9	17
117	Facile synthesis of rutile TiO2/carbon nanosheet composite from MAX phase for lithium storage. Journal of Materials Science and Technology, 2019, 35, 1977-1981.	5.6	17
118	<scp>3D Foamâ€Based MXene</scp> Architectures: Structural and Electrolytic Engineering for Advanced Potassiumâ€lon Storage. Energy and Environmental Materials, 0, , .	7.3	17
119	Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors. Journal of Power Sources, 2008, 184, 402-407.	4.0	16
120	Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties. Chinese Chemical Letters, 2022, 33, 3212-3216.	4.8	15
121	In-Situ Construction of 2D/2D CuCo2S4/Bi2WO6 contact heterojunction as a visible-light-driven fenton-like catalyst with highly efficient charge transfer for highly efficient degradation of tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127965.	2.3	14
122	A floral variant of mesoporous carbon as an anode material for high performance sodium and lithium ion batteries. RSC Advances, 2016, 6, 78235-78240.	1.7	13
123	Organic salt-derived nitrogen-rich, hierarchical porous carbon for ultrafast supercapacitors. New Journal of Chemistry, 2017, 41, 13611-13618.	1.4	13
124	Se-decorated SnO2/rGO composite spheres and their sodium storage performances. Chinese Chemical Letters, 2021, 32, 282-285.	4.8	13
125	Nano/micro structured porous Li ₄ Ti ₅ O ₁₂ synthesized by a polyethylene glycol assisted hydrothermal method for high rate lithium-ion batteries. RSC Advances, 2014, 4, 53981-53986.	1.7	12
126	Nano-CaO templated carbon by CVD: From nanosheets to nanocages. Materials Letters, 2015, 143, 159-162.	1.3	12

#	Article	IF	CITATIONS
127	Li and Ti Co-doping to stabilize slabs of high-voltage P2-type Na0.560[Li0.041Mn0.642Ni0.221Ti0.095]O2. Journal of Alloys and Compounds, 2020, 824, 153938.	2.8	12
128	Pore Size Effect of Carbon Electrodes on the Electrochemical Double-Layer Capacitance in LiTFSI/2-Oxazolidinone Complex Electrolyte. Journal of Physical Chemistry C, 2012, 116, 2594-2599.	1.5	11
129	Soft carbon-coated bulk graphite for improved potassium ion storage. Chinese Chemical Letters, 2023, 34, 107312.	4.8	11
130	Hierarchical porous carbon prepared from mulberry leaves for supercapacitors. Ionics, 2019, 25, 4935-4941.	1.2	9
131	Ni or FeO nanocrystal-integrated hollow (solid) N-doped carbon nanospheres: preparation, characterization and electrochemical properties. Nanoscale, 2020, 12, 15157-15168.	2.8	9
132	Activated Carbon / Graphene Hybrid Aerogels as Electrode Materials for High Performance Supercapacitors. ChemistrySelect, 2017, 2, 4456-4461.	0.7	8
133	2.0 V Manganese Oxide/Carbon Nanotube Array Based Hybrid Electrochemical Capacitors with High Discharge Rates. ECS Solid State Letters, 2012, 1, M1-M3.	1.4	7
134	Synergism of carbon quantum dots and Au nanoparticles with Bi ₂ MoO ₆ for activity enhanced photocatalytic oxidative degradation of phenol. RSC Advances, 2021, 11, 28674-28684.	1.7	6
135	How does lithium oxalyldifluoroborate enable the compatibility of ionic liquids and carbon-based capacitors?. Journal of Power Sources, 2015, 276, 299-308.	4.0	5
136	PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environmental Science and Pollution Research, 2022, 29, 84410-84420.	2.7	5
137	Effect of Fluorine Content on the Electrochemical Properties of PVDF-Derived Carbons for Lithium Ion Battery. Advanced Materials Research, 2012, 463-464, 730-733.	0.3	4
138	Nano-MgO Templated Mesoporous Carbon as Anode Material for Li-Ion Batteries. Advanced Materials Research, 0, 581-582, 561-564.	0.3	0