Frank Keppler

List of Publications by Citations

Source: https://exaly.com/author-pdf/8505890/frank-keppler-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 4,277 129 32 h-index g-index citations papers 161 5,003 7.4 5.35 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
129	Methane emissions from terrestrial plants under aerobic conditions. <i>Nature</i> , 2006 , 439, 187-91	50.4	690
128	Halocarbons produced by natural oxidation processes during degradation of organic matter. <i>Nature</i> , 2000 , 403, 298-301	50.4	277
127	Chloride methylation by plant pectin: an efficient environmentally significant process. <i>Science</i> , 2003 , 301, 206-9	33.3	153
126	Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. <i>New Phytologist</i> , 2008 , 178, 808-814	9.8	135
125	Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. <i>Biogeosciences</i> , 2008 , 5, 937-947	4.6	124
124	Evidence for methane production by saprotrophic fungi. <i>Nature Communications</i> , 2012 , 3, 1046	17.4	117
123	New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 2403-2411	6.8	108
122	Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. <i>Environmental Science & Environmental Science</i>	10.3	106
121	Transitory microbial habitat in the hyperarid Atacama Desert. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2670-2675	11.5	105
120	Carbon isotope anomaly in the major plant C₁ pool and its global biogeochemical implications. <i>Biogeosciences</i> , 2004 , 1, 123-131	4.6	92
119	Atmospheric constraints on global emissions of methane from plants. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	88
118	Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 2020, 6, eaax5343	14.3	85
117	Methane formation in aerobic environments. <i>Environmental Chemistry</i> , 2009 , 6, 459	3.2	83
116	Nitrous oxide and methane emissions from cryptogamic covers. <i>Global Change Biology</i> , 2015 , 21, 3889-	9 00 .4	75
115	Exogenous addition of H for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. <i>Waste Management</i> , 2017 , 68, 146-156	8.6	74
114	Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. <i>New Phytologist</i> , 2007 , 176, 600-609	9.8	71
113	Formation of chloroacetic acids from soil, humic acid and phenolic moieties. <i>Chemosphere</i> , 2003 , 52, 51	3 ₽ ₽	64

112	Abiotic Fe(III) induced mineralization of phenolic substances. <i>Chemosphere</i> , 2001 , 44, 613-9	8.4	64
111	Evidence for methane production by the marine algae <i>Emiliania huxleyi</i>. <i>Biogeosciences</i> , 2016 , 13, 3163-3174	4.6	64
110	Natural formation of vinyl chloride in the terrestrial environment. <i>Environmental Science & Environmental Science & Technology</i> , 2002 , 36, 2479-83	10.3	62
109	Abiotic methanogenesis from organosulphur compounds under ambient conditions. <i>Nature Communications</i> , 2014 , 5, 4205	17.4	61
108	Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. <i>Nature</i> , 2012 , 486, 93-6	50.4	57
107	The stable isotope signature of methane emitted from plant material under UV irradiation. <i>Atmospheric Environment</i> , 2009 , 43, 5637-5646	5.3	55
106	Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. <i>Plant, Cell and Environment,</i> 2011 , 34, 457-64	8.4	51
105	Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. <i>Rapid Communications in Mass Spectrometry</i> , 2013 , 27, 265-75	2.2	49
104	Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. <i>Environmental Science & Environmental Science & Environme</i>	10.3	43
103	Improved rapid authentication of vanillin using <code>I</code> 3C and <code>I</code> H values. <i>European Food Research and Technology</i> , 2010 , 231, 933-941	3.4	42
102	A rapid and precise method for determination of D/H ratios of plant methoxyl groups. <i>Rapid Communications in Mass Spectrometry</i> , 2008 , 22, 3983-8	2.2	36
101	Organoiodine formation during humification in peatlands. <i>Environmental Chemistry Letters</i> , 2003 , 1, 219	9-233	35
100	Online monitoring of stable carbon isotopes of methane in anaerobic digestion as a new tool for early warning of process instability. <i>Bioresource Technology</i> , 2015 , 197, 161-70	11	32
99	Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane. <i>Journal of Breath Research</i> , 2016 , 10, 016003	3.1	32
98	Identification of methanogenic pathways in anaerobic digesters using stable carbon isotopes. <i>Engineering in Life Sciences</i> , 2010 , 10, 509-514	3.4	32
97	. IEEE Journal of Quantum Electronics, 1989 , 25, 1407-1416	2	31
96	Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. <i>Chemosphere</i> , 2010 , 80, 286-92	8.4	30
95	Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components		30

94	Technical Note: Methionine, a precursor of methane in living plants. <i>Biogeosciences</i> , 2015 , 12, 1907-19	144.6	29
93	[H, [IIC and IID from whole wood, Evellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach. <i>Isotopes in Environmental and Health Studies</i> , 2015 , 51, 553-68	1.5	27
92	Non-microbial methane formation in oxic soils. <i>Biogeosciences</i> , 2012 , 9, 5291-5301	4.6	27
91	Methyl chloride and C205 hydrocarbon emissions from dry leaf litter and their dependence on temperature. <i>Atmospheric Environment</i> , 2011 , 45, 3112-3119	5.3	27
90	Differentiation of the halogen content of peat samples using ion chromatography after combustion (TX/TOX-IC). <i>Analytical and Bioanalytical Chemistry</i> , 2003 , 375, 781-5	4.4	26
89	Peatlands: a major sink of naturally formed organic chlorine. <i>Chemosphere</i> , 2003 , 52, 451-3	8.4	26
88	Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. <i>Biogeosciences</i> , 2019 , 16, 4129-4144	4.6	26
87	Measurements of 13C/12C methane from anaerobic digesters: comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry. <i>Environmental Science & Environmental Science & En</i>	10.3	25
86	A simple rapid method to precisely determine (13)C/(12)C ratios of plant methoxyl groups. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 1710-4	2.2	25
85	High Spatiotemporal Dynamics of Methane Production and Emission in Oxic Surface Water. <i>Environmental Science & Environmental </i>	10.3	25
84	Release of methane from aerobic soil: an indication of a novel chemical natural process?. <i>Chemosphere</i> , 2012 , 86, 684-9	8.4	24
83	Non-microbial methane emissions from fresh leaves: Effects of physical wounding and anoxia. <i>Atmospheric Environment</i> , 2011 , 45, 4915-4921	5.3	24
82	Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. <i>New Phytologist</i> , 2019 , 221, 1398-1408	9.8	24
81	Methyl chloride emissions from halophyte leaf litter: dependence on temperature and chloride content. <i>Chemosphere</i> , 2012 , 87, 483-9	8.4	23
80	Stable bromine isotopic composition of methyl bromide released from plant matter. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 125, 186-195	5.5	21
79	Age dependent breath methane in the German population. <i>Science of the Total Environment</i> , 2014 , 481, 582-7	10.2	21
78	Tracing the geographical origin of early potato tubers using stable hydrogen isotope ratios of methoxyl groups. <i>Isotopes in Environmental and Health Studies</i> , 2008 , 44, 337-47	1.5	21
77	Formation of volatile iodinated alkanes in soil: results from laboratory studies. <i>Chemosphere</i> , 2003 , 52, 477-83	8.4	20

76	Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater. <i>Chemosphere</i> , 2003 , 52, 339-54	8.4	20
75	De novo formation of chloroethyne in soil. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	18
74	Site-specific climatic signals in stable isotope records from Swedish pine forests. <i>Trees - Structure and Function</i> , 2018 , 32, 855-869	2.6	17
73	Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. <i>Frontiers in Microbiology</i> , 2014 , 5, 523	5.7	17
72	Isotopic composition of H2 from wood burning: Dependency on combustion efficiency, moisture content, and $\bf D$ of local precipitation. <i>Journal of Geophysical Research</i> , 2010 , 115,		17
71	Influence of different growth techniques on the quality of GaInAs-InP quantum well structures grown by adduct-MOVPE. <i>Journal of Crystal Growth</i> , 1988 , 93, 347-352	1.6	17
70	Late Quaternary relative humidity changes from Mt. Kilimanjaro, based on a coupled 2 H- 18 O biomarker paleohygrometer approach. <i>Quaternary International</i> , 2017 , 438, 116-130	2	16
69	Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. <i>Frontiers in Physiology</i> , 2019 , 10, 1244	4.6	16
68	Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth. <i>PLoS ONE</i> , 2017 , 12, e0177570	3.7	16
67	Mean annual temperatures of mid-latitude regions derived from H values of wood lignin methoxyl groups and its implications for paleoclimate studies. <i>Science of the Total Environment</i> , 2017 , 574, 1276-	1 1 8 2	16
66	Stable hydrogen-isotope analysis of methyl chloride emitted from heated halophytic plants. <i>Atmospheric Environment</i> , 2012 , 62, 584-592	5.3	15
65	Water drives the deuterium content of the methane emitted from plants. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 3865-3873	5.5	15
64	Stable isotope determination of ester and ether methyl moieties in plant methoxyl groups. <i>Isotopes in Environmental and Health Studies</i> , 2011 , 47, 470-82	1.5	15
63	Nonheme Iron-Oxo-Catalyzed Methane Formation from Methyl Thioethers: Scope, Mechanism, and Relevance for Natural Systems. <i>Chemistry - A European Journal</i> , 2017 , 23, 10465-10472	4.8	14
62	Fast determination of methyl chloride and methyl bromide emissions from dried plant matter and soil samples using HS-SPME and GC-MS: method and first results. <i>Environmental Chemistry</i> , 2009 , 6, 311	3.2	14
61	Design and application of a synthetic DNA standard for real-time PCR analysis of microbial communities in a biogas digester. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 6855-63	5.7	13
60	Methane, Plants and Climate Change. Scientific American, 2007, 296, 52-57	0.5	13
59	Widespread methane formation by Cyanobacteria in aquatic and terrestrial ecosystems		13

58	Vanilla authenticity control by DNA barcoding and isotope data aggregation. <i>Flavour and Fragrance Journal</i> , 2017 , 32, 228-237	2.5	12
57	Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria. <i>MicrobiologyOpen</i> , 2013 , 2, 893-900	3.4	12
56	Stable hydrogen and carbon isotope ratios of methoxyl groups during plant litter degradation. <i>Isotopes in Environmental and Health Studies</i> , 2015 , 51, 143-54	1.5	11
55	Climate signals in 🛘 3C of wood lignin methoxyl groups from high-elevation larch trees. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2016 , 445, 60-71	2.9	11
54	Earliest Eocene cold period and polar amplification - Insights from IdH values of lignin methoxyl groups of mummified wood. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2018 , 505, 326-336	2.9	11
53	Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. <i>Scientific Reports</i> , 2014 , 4, 7010	4.9	11
52	Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters. <i>Engineering in Life Sciences</i> , 2014 , 14, 153-160	3.4	11
51	Global methane emissions from the human body: Past, present and future. <i>Atmospheric Environment</i> , 2019 , 214, 116823	5.3	10
50	Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. <i>Isotopes in Environmental and Health Studies</i> , 2013 , 49, 365-77	1.5	10
49	Stable hydrogen isotope values of lignin methoxyl groups of four tree species across Germany and their implication for temperature reconstruction. <i>Science of the Total Environment</i> , 2017 , 579, 263-271	10.2	9
48	Chloromethane Degradation in Soils: A Combined Microbial and Two-Dimensional Stable Isotope Approach. <i>Journal of Environmental Quality</i> , 2018 , 47, 254-262	3.4	9
47	D/H ratios of methoxyl groups of the sedimentary organic matter of Lake Holzmaar (Eifel, Germany): A potential palaeoclimate/-hydrology proxy. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 142, 39-52	5.5	9
46	Seasonal changes in chlorine and methoxyl content of leaves of deciduous trees and their impact on release of chloromethane and methanol at elevated temperatures. <i>Environmental Chemistry</i> , 2015 , 12, 426	3.2	9
45	A stable isotope approach to assessing water loss in fruits and vegetables during storage. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 1974-81	5.7	9
44	Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1703-1719	6.8	8
43	Warm season precipitation signal in [H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 1589-1598	2.2	8
42	Chloromethane emissions in human breath. Science of the Total Environment, 2017, 605-606, 405-410	10.2	8
41	Chloromethane formation and degradation in the fern phyllosphere. <i>Science of the Total Environment</i> , 2018 , 634, 1278-1287	10.2	7

(2022-2013)

40	Position-specific isotope analysis of the methyl group carbon in methylcobalamin for the investigation of biomethylation processes. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 2833-41	4.4	7	
39	Chapter 19 Occurrence and fate of halogens in mires. <i>Developments in Earth Surface Processes</i> , 2006 , 9, 449-464	2.8	7	
38	Long-term monitoring of breath methane. Science of the Total Environment, 2018, 624, 69-77	10.2	6	
37	Carbon isotope anomaly in the major plant C ₁ pool and its global biogeochemical implications		6	
36	Methyl sulfates as methoxy isotopic reference materials for IC and IH measurements. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 343-350	2.2	6	
35	Sources and sinks of chloromethane in a salt marsh ecosystem: constraints from concentration and stable isotope measurements of laboratory incubation experiments. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 627-641	4.3	5	
34	Optical gain in strain-free and strained layer GaXIn1AAs/InP superlattices. <i>Superlattices and Microstructures</i> , 1989 , 5, 555-559	2.8	5	
33	Methylotrophs and Methylotroph Populations for Chloromethane Degradation. <i>Current Issues in Molecular Biology</i> , 2019 , 33, 149-172	2.9	5	
32	The stable carbon isotope signature of methane produced by saprotrophic fungi. <i>Biogeosciences</i> , 2020 , 17, 3891-3901	4.6	5	
31	Three wood isotopic reference materials for IIH and II3C measurements of plant methoxy groups. <i>Chemical Geology</i> , 2020 , 533, 119428	4.2	5	
30	Effects of Temperature and Light on Methane Production of Widespread Marine Phytoplankton. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2020JG005793	3.7	5	
29	Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6625-6635	6.8	5	
28	Simultaneous Abiotic Production of Greenhouse Gases (CO2, CH4, and N2O) in Subtropical Soils. Journal of Geophysical Research G: Biogeosciences, 2019 , 124, 1977-1987	3.7	4	
27	Tree-ring Id values from lignin methoxyl groups indicate sensitivity to European-scale temperature changes. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2020 , 546, 109665	2.9	4	
26	Comment on Authenticity and traceability of vanilla flavors by analysis of stable isotopes of carbon and hydrogen. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 5305-6	5.7	4	
25	Evidence for methane production by marine algae (<i>Emiliana huxleyi</i>) and its implication for the methane paradox in oxic waters		4	
24	Non-microbial methane formation in oxic soils		4	
23	Methane formation driven by reactive oxygen species across all living organisms <i>Nature</i> , 2022 ,	50.4	4	

22	Temperature signal recorded in $\mathbb H$ and $\mathbb C$ values of wood lignin methoxyl groups from a permafrost forest in northeastern China. <i>Science of the Total Environment</i> , 2020 , 727, 138558	10.2	3
21	A fast and sensitive method for the continuous in situ determination of dissolved methane and its <code>13C-isotope</code> ratio in surface waters. <i>Limnology and Oceanography: Methods</i> , 2018 , 16, 273-285	2.6	3
20	Chlorine Isotope Fractionation of the Major Chloromethane Degradation Processes in the Environment. <i>Environmental Science & Environmental Science & E</i>	10.3	3
19	Tree-ring lignin proxies in Larix gmelinii forest growing in a permafrost area of northeastern China: Temporal variation and potential for climate reconstructions. <i>Ecological Indicators</i> , 2020 , 118, 106750	5.8	3
18	The impact of seasonal sulfatethethane transition zones on methane cycling in a sulfate-enriched freshwater environment. <i>Limnology and Oceanography</i> , 2021 , 66, 2290-2308	4.8	3
17	Methane oxidation in industrial biogas plants-Insights in a novel methanotrophic environment evidenced by pmoA gene analyses and stable isotope labelling studies. <i>Journal of Biotechnology</i> , 2018 , 270, 77-84	3.7	2
16	Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatīl Peninsula, Mexico. <i>Biogeosciences</i> , 2019 , 16, 2285-2305	4.6	2
15	Late permian changes in conditions of the atmosphere and environments caused by halogenated gases. <i>Doklady Earth Sciences</i> , 2009 , 425, 291-295	0.6	2
14	Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatīl Peninsula, Mexico		2
13	Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and relevance for the environment		2
12	C-chloromethane incubations provide evidence for novel bacterial chloromethane degraders in a living tree fern. <i>Environmental Microbiology</i> , 2021 , 23, 4450-4465	5.2	2
11	Technical note: Methionine, a precursor of methane in living plants 2014,		1
10	De novo formation of organochlorines in a sewage treatment plant. <i>Biogeochemistry</i> , 2003 , 62, 277-287	3.8	1
9	Chapter 8:Production and Signaling of Methane. 2-Oxoglutarate-Dependent Oxygenases, 2018, 192-234	1.8	1
8	Iron catalyzed demethylation of acetic acid*. <i>Journal of Coordination Chemistry</i> , 2018 , 71, 1704-1714	1.6	1
7	Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnology and Oceanography,	4.8	1
6	Anstze zur regionalen Quantifizierung von Methan aus Pflanzen. <i>Environmental Sciences Europe</i> , 2008 , 20, 75-79	5	О
5	Measurements and applications of <code>2H</code> values of wood lignin methoxy groups for paleoclimatic studies. <i>Quaternary Science Reviews</i> , 2021 , 268, 107107	3.9	O

LIST OF PUBLICATIONS

Real Time Measurement of Concentration and 🗓 3C-CH4 in Water. *Procedia Earth and Planetary Science*, **2017**, 17, 460-463

3	A surprise from the deep. <i>Science</i> , 2021 , 374, 821-822	33-3
2	Stable Biological Production in the Eastern Equatorial Pacific Across the Plio-Pleistocene Transition (~3.35\overline{\Omega}.0'\text{Ma}). <i>Paleoceanography and Paleoclimatology</i> , 2021 , 36, e2020PA003965	3-3
1	Methane, plants and climate change. <i>Scientific American</i> , 2007 , 296, 40-5	0.5