
John N Kuhn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8505701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO ₂ conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO ₂ conversion to liquid fuels. RSC Advances, 2016, 6, 49675-49691.	1.7	384
2	Carbon Dioxide Conversion by Reverse Water–Gas Shift Chemical Looping on Perovskite-Type Oxides. Industrial & Engineering Chemistry Research, 2014, 53, 5828-5837.	1.8	133
3	Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Applied Catalysis B: Environmental, 2015, 179, 213-219.	10.8	113
4	Biogas Reforming to Syngas: A Review. IScience, 2020, 23, 101082.	1.9	109
5	Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–(Ce,Zr)O2 catalysts. Applied Catalysis A: General, 2012, 445-446, 61-68.	2.2	94
6	Earth abundant perovskite oxides for low temperature CO ₂ conversion. Energy and Environmental Science, 2018, 11, 648-659.	15.6	93
7	Enhanced CO ₂ Conversion to CO by Silica-Supported Perovskite Oxides at Low Temperatures. ACS Catalysis, 2018, 8, 3021-3029.	5.5	87
8	lsothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1â^)Fe O3 perovskite-type oxides. Catalysis Today, 2015, 258, 691-698.	2.2	72
9	Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La _(1â^xx) Sr _x Fe _(1â^y) Co _y O _(3â^î^) perovskite oxides for CO ₂ conversion. Journal of Materials Chemistry A, 2016, 4, 5137-5148.	5.2	65
10	Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Applied Catalysis B: Environmental, 2017, 202, 156-164.	10.8	63
11	Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides. Catalysis Today, 2019, 323, 225-232.	2.2	51
12	MoS ₂ Nanoflowers as a Gateway for Solar-Driven CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 265-275.	3.2	50
13	Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catalysis Today, 2019, 338, 52-59.	2.2	40
14	Requirements, techniques, and costs for contaminant removal from landfill gas. Waste Management, 2017, 63, 246-256.	3.7	38
15	Size-Dependent Sulfur Poisoning of Silica-Supported Monodisperse Pt Nanoparticle Hydrogenation Catalysts. ACS Catalysis, 2012, 2, 2626-2629.	5.5	35
16	More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0.75Sr0.25FeO3 perovskite oxides. Surface Science, 2016, 648, 92-99.	0.8	34
17	Impact of Ni and Mg Loadings on Dry Reforming Performance of Pt/Ceria-Zirconia Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 9322-9330.	1.8	33
18	Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Waste Management, 2018, 73, 189-196.	3.7	32

Јони N Кини

#	Article	IF	CITATIONS
19	Conversion of landfill gas to liquid fuels through a TriFTS (tri-reforming and Fischer–Tropsch) Tj ETQq1 1 0.7843	14 rgBT /C 2.5	Dyerlock 10
20	Effect of silicon poisoning on catalytic dry reforming of simulated biogas. Applied Catalysis A: General, 2017, 538, 157-164.	2.2	30
21	Techno-economic analysis of producing liquid fuels from biomass via anaerobic digestion and thermochemical conversion. Biomass and Bioenergy, 2019, 130, 105395.	2.9	26
22	Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb+3,Er+3 composite photocatalysts for organic degradation. Applied Catalysis B: Environmental, 2017, 202, 147-155.	10.8	25
23	NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas. Industrial & Engineering Chemistry Research, 2018, 57, 845-855.	1.8	22
24	Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst. ACS Catalysis, 2012, 2, 1363-1367.	5.5	20
25	Precious Metal Doped Ni–Mg/Ceria–Zirconia Catalysts for Methane Conversion to Syngas by Low Temperature Bi-reforming. Catalysis Letters, 2018, 148, 1003-1013.	1.4	20
26	Hydrocarbon steam reforming using Silicaliteâ€1 zeolite encapsulated Niâ€based catalyst. AICHE Journal, 2017, 63, 200-207.	1.8	19
27	Hybrid Co@Ni12P5/PPy microspheres with dual synergies for high performance oxygen evolution. Journal of Catalysis, 2020, 391, 357-365.	3.1	19
28	Verification of Organic Capping Agent Removal from Supported Colloidal Synthesized Pt Nanoparticle Catalysts. Topics in Catalysis, 2013, 56, 1835-1842.	1.3	17
29	Scalable and stable silica-coated silver nanoparticles, produced by electron beam evaporation and rapid thermal annealing, for plasmon-enhanced photocatalysis. Catalysis Communications, 2021, 149, 106213.	1.6	17
30	Comparison of Pd–Ni–Mg/Ceria–Zirconia and Pt–Ni–Mg/Ceria–Zirconia Catalysts for Syngas Production via Low Temperature Reforming of Model Biogas. Topics in Catalysis, 2016, 59, 138-146.	1.3	16
31	CO ₂ Conversion Performance of Perovskite Oxides Designed with Abundant Metals. Industrial & Engineering Chemistry Research, 2019, 58, 12551-12560.	1.8	16
32	Effect of Molybdenum on the Sulfur-Tolerance of Cerium–Cobalt Mixed Oxide Water–Gas Shift Catalysts. Topics in Catalysis, 2013, 56, 1892-1898.	1.3	15
33	Parameters Influencing the Photocatalytic Degradation of Geosmin and 2-Methylisoborneol Utilizing Immobilized TiO2. Catalysis Letters, 2014, 144, 1460-1465.	1.4	15
34	Tri-reforming of surrogate biogas over Ni/Mg/ceria–zirconia/alumina pellet catalysts. Chemical Engineering Communications, 2018, 205, 1129-1142.	1.5	15
35	Mesoporous Silica Supported Perovskite Oxides for Low Temperature Thermochemical CO ₂ Conversion. ChemCatChem, 2020, 12, 6317-6328.	1.8	15
36	Effect of Zeolite Membrane Shell Thickness on Reactant Selectivity for Hydrocarbon Steam Reforming Using Layered Catalysts. Energy & Fuels, 2016, 30, 5300-5308.	2.5	14

Јони N Кини

#	Article	IF	CITATIONS
37	Synthesis, Characterization, and Photocatalytic Degradation Performances of Composite Photocatalytic Semiconductors (InVO4–TiO2) Using Pure and Mixed Phase Titania Powders. Catalysis Letters, 2013, 143, 772-776.	1.4	12
38	Oxidation of off flavor compounds in recirculating aquaculture systems using UV-TiO2 photocatalysis. Aquaculture, 2019, 502, 32-39.	1.7	11
39	Plasmonic photocatalytic reactor design: Use of multilayered films for improved organic degradation rates in a recirculating flow reactor. Chemical Engineering Journal, 2017, 314, 11-18.	6.6	10
40	Hydrothermal Carbonization of Residual Algal Biomass for Production of Hydrochar as a Biobased Metal Adsorbent. Sustainability, 2022, 14, 455.	1.6	10
41	Selective and Stable In-Promoted Fe Catalyst for Syngas Conversion to Light Olefins. ACS Catalysis, 2021, 11, 15177-15186.	5.5	9
42	Engineering surface and morphology of La/WO ₃ for electrochemical oxygen reduction. CrystEngComm, 2020, 22, 2397-2405.	1.3	7
43	Unravelling the Origin of Enhanced Electrochemical Performance in CoSe ₂ â^'MoSe ₂ Interfaces. ChemCatChem, 2021, 13, 2017-2024.	1.8	7
44	CO2 separation from biogas using PEI-modified crosslinked polymethacrylate resin sorbent. Journal of Industrial and Engineering Chemistry, 2021, 103, 255-263.	2.9	7
45	Interface Engineering of Metal Oxynitride Lateral Heterojunctions for Photocatalytic and Optoelectronic Applications. Journal of Physical Chemistry C, 2018, 122, 22504-22511.	1.5	6
46	Intrinsically strained noble metal-free oxynitrides for solar photoreduction of CO2. Dalton Transactions, 2019, 48, 12738-12748.	1.6	6
47	Role of Ba in low temperature thermochemical conversion of carbon dioxide with LaFeO3 perovskite oxides. Journal of CO2 Utilization, 2021, 51, 101638.	3.3	5
48	Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. Journal of Environmental Management, 2022, 314, 115070.	3.8	5
49	Layered Catalysts for Low Temperature Size Selective Reforming of Hydrocarbons. Topics in Catalysis, 2018, 61, 844-854.	1.3	3
50	Aqueousâ€Phase Photocatalytic Degradation of Emerging Forever Chemical Contaminants. ChemistrySelect, 2021, 6, 5225-5240.	0.7	2
51	Valorization of Brassica carinata biomass through conversion to hydrolysate and hydrochar. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
52	Preface to the Special Issue Honoring Umit Ozkan: ACS Distinguished Researcher in Petroleum Chemistry. Topics in Catalysis, 2013, 56, 1601-1602.	1.3	0
53	Stability and Kinetics of Silica-Protected Plasmonic Photocatalysts for Gas-Phase Degradation of Total Volatile Organic Compounds. Catalysis Letters, 0, , 1.	1.4	0