Miriam Potrony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8505498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TERT Promoter Mutation Status as an Independent Prognostic Factor in Cutaneous Melanoma. Journal of the National Cancer Institute, 2014, 106, .	6.3	204
2	Comprehensive Study of the Clinical Phenotype of Germline <i>BAP1</i> Variant-Carrying Families Worldwide. Journal of the National Cancer Institute, 2018, 110, 1328-1341.	6.3	164
3	Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nature Medicine, 2022, 28, 535-544.	30.7	158
4	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	21.4	138
5	Update in genetic susceptibility in melanoma. Annals of Translational Medicine, 2015, 3, 210.	1.7	100
6	Increased prevalence of lung, breast, and pancreatic cancers in addition to melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A mutation: Implications for genetic counseling. Journal of the American Academy of Dermatology, 2014, 71, 888-895.	1.2	52
7	The <scp><i>MC1R</i></scp> melanoma risk variant p. <scp>R160W</scp> is associated with <scp>P</scp> arkinson disease. Annals of Neurology, 2015, 77, 889-894.	5.3	52
8	Prevalence of <i>MITF</i> p.E318K in Patients With Melanoma Independent of the Presence of <i>CDKN2A</i> Causative Mutations. JAMA Dermatology, 2016, 152, 405.	4.1	41
9	<i> <scp>POT</scp> 1 </i> germline mutations but not <i> <scp>TERT</scp> </i> promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. British Journal of Dermatology, 2019, 181, 105-113.	1.5	37
10	Association of the <i>POT1</i> Germline Missense Variant p.178T With Familial Melanoma. JAMA Dermatology, 2019, 155, 604.	4.1	34
11	Efficacy of novel immunotherapy regimens in patients with metastatic melanoma with germline <i>CDKN2A</i> mutations. Journal of Medical Genetics, 2020, 57, 316-321.	3.2	33
12	Characterization of individuals at high risk of developing melanoma in Latin America: bases for genetic counseling in melanoma. Genetics in Medicine, 2016, 18, 727-736.	2.4	31
13	Melanocortin 1 receptor (<i><scp>MC</scp>1R</i>) polymorphisms' influence on size and dermoscopic features of nevi. Pigment Cell and Melanoma Research, 2018, 31, 39-50.	3.3	28
14	Role of <i><scp>CPI</scp>â€17</i> in restoring skin homoeostasis in cutaneous field of cancerization: effects of topical application of a filmâ€forming medical device containing photolyase and <scp>UV</scp> filters. Experimental Dermatology, 2013, 22, 494-496.	2.9	19
15	Germline ATM variants predispose to melanoma: a joint analysis across the GenoMEL and MelaNostrum consortia. Genetics in Medicine, 2021, 23, 2087-2095.	2.4	19
16	Genetic susceptibility to cutaneous melanoma in southern Switzerland: role of <i>CDKN2A</i> , <i>MC1R</i> and <i>MITF</i> . British Journal of Dermatology, 2016, 175, 1030-1037.	1.5	17
17	Association of Melanocortin-1 Receptor Variants with Pigmentary Traits in Humans: AÂPooled Analysis from the M-Skip Project. Journal of Investigative Dermatology, 2016, 136, 1914-1917.	0.7	16
18	MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort. The Lancet Child and Adolescent Health, 2019, 3, 332-342.	5.6	16

MIRIAM POTRONY

#	Article	IF	CITATIONS
19	Inherited functional variants of the lymphocyte receptor CD5 influence melanoma survival. International Journal of Cancer, 2016, 139, 1297-1302.	5.1	14
20	Association Between Confocal Morphologic Classification and Clinical Phenotypes of Multiple Primary and Familial Melanomas. JAMA Dermatology, 2016, 152, 1099.	4.1	13
21	Genomic analysis and clinical management of adolescent cutaneous melanoma. Pigment Cell and Melanoma Research, 2017, 30, 307-316.	3.3	12
22	Lack of Mutations in POT1 Gene in Selected Families with Familial Non-Medullary Thyroid Cancer. Hormones and Cancer, 2020, 11, 111-116.	4.9	12
23	<i>IRF4</i> rs12203592 functional variant and melanoma survival. International Journal of Cancer, 2017, 140, 1845-1849.	5.1	11
24	Inherited MC 1R variants in patients with melanoma are associated with better survival in women. British Journal of Dermatology, 2020, 182, 138-146.	1.5	10
25	Sex as a predictor of response to cancer immunotherapy. Lancet Oncology, The, 2018, 19, e375.	10.7	9
26	Dermoscopy comparative approach for early diagnosis in familial melanoma: influence of <i>MC1R</i> genotype. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 403-410.	2.4	8
27	Detection of cellâ€free circulating <scp> <i>BRAF</i> ^V </scp> ^{600E} by droplet digital polymerase chain reaction in patients with and without melanoma under dermatological surveillance. British Journal of Dermatology, 2020, 182, 382-389.	1.5	7
28	Efficacy of BRAF and MEK Inhibition in Patients with BRAF-Mutant Advanced Melanoma and Germline CDKN2A Pathogenic Variants. Cancers, 2021, 13, 2440.	3.7	6
29	Common genetic variants associated with melanoma risk or naevus count in patients with wildtype MC1R melanoma. British Journal of Dermatology, 2022, 187, 753-764.	1.5	6
30	A Common Variant in the MC1R Gene (p.V92M) is associated with Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2017, 56, 1065-1074.	2.6	5
31	The p. R151C Polymorphism in MC1R Gene Modifies the Age of Onset in Spanish Huntington's Disease Patients. Molecular Neurobiology, 2017, 54, 3906-3910.	4.0	5
32	Melanocortinâ€1 receptor (<i>MC1R</i>) genotypes do not correlate with size in two cohorts of mediumâ€ŧoâ€giant congenital melanocytic nevi. Pigment Cell and Melanoma Research, 2020, 33, 685-694.	3.3	5
33	Histologic features of melanoma associated with germline mutations of CDKN2A, CDK4, and POT1 in melanoma-prone families from the United States, Italy, and Spain. Journal of the American Academy of Dermatology, 2020, 83, 860-869.	1.2	5
34	Genome-wide linkage analysis in Spanish melanoma-prone families identifies a new familial melanoma susceptibility locus at 11q. European Journal of Human Genetics, 2018, 26, 1188-1193.	2.8	4
35	Genetic markers for characterization and prediction of prognosis of melanoma subtypes: a 2021 update. Italian Journal of Dermatology and Venereology, 2021, 156, 322-330.	0.2	4

36 Reply. Annals of Neurology, 2016, 79, 161-163.

5.3 3

#	Article	IF	CITATIONS
37	Time and tumor type (primary or metastatic) do not influence the detection of BRAF/NRAS mutations in formalin fixed paraffin embedded samples from melanomas. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1733-1738.	2.3	2
38	DNA Repair and Immune Response Pathways Are Deregulated in Melanocyte-Keratinocyte Co-cultures Derived From the Healthy Skin of Familial Melanoma Patients. Frontiers in Medicine, 2021, 8, 692341.	2.6	2
39	Influence of germline genetic variants on dermoscopic features of melanoma. Pigment Cell and Melanoma Research, 2021, 34, 618-628.	3.3	2
40	Reply. Annals of Neurology, 2015, 78, 153-154.	5.3	1
41	Reply. Annals of Neurology, 2016, 79, 868-868.	5.3	0