
Tanya Golubchik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8505458/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021, 184, 64-75.e11.	28.9	843
2	Diverse Sources of <i>C. difficile</i> Infection Identified on Whole-Genome Sequencing. New England Journal of Medicine, 2013, 369, 1195-1205.	27.0	595
3	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, The, 2021, 397, 1351-1362.	13.7	540
4	Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 2015, 6, 10063.	12.8	479
5	Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. New England Journal of Medicine, 2018, 379, 1403-1415.	27.0	405
6	Multilocus Sequence Typing of <i>Clostridium difficile</i> . Journal of Clinical Microbiology, 2010, 48, 770-778.	3.9	399
7	Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing. Journal of Clinical Microbiology, 2014, 52, 1182-1191.	3.9	303
8	SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .	12.6	278
9	Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infectious Diseases, The, 2017, 17, 411-421.	9.1	269
10	Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health, The, 2021, 6, e335-e345.	10.0	269
11	Evolutionary dynamics of <i>Staphylococcus aureus</i> during progression from carriage to disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4550-4555.	7.1	244
12	A pilot study of rapid benchtop sequencing of <i>Staphylococcus aureus</i> and <i>Clostridium difficile</i> for outbreak detection and surveillance. BMJ Open, 2012, 2, e001124.	1.9	228
13	Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biology, 2012, 13, R118.	9.6	199
14	Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–12, with whole pathogen genome sequences: an observational study. Lancet Respiratory Medicine,the, 2014, 2, 285-292.	10.7	199
15	Within-Host Evolution of Staphylococcus aureus during Asymptomatic Carriage. PLoS ONE, 2013, 8, e61319.	2.5	194
16	Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 2014, 6, 36-52.	2.5	190
17	Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infectious Diseases, The, 2017, 17, 207-214.	9.1	155
18	Clinical Clostridium difficile: Clonality and Pathogenicity Locus Diversity. PLoS ONE, 2011, 6, e19993.	2.5	150

TANYA GOLUBCHIK

#	Article	IF	CITATIONS
19	Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nature Genetics, 2012, 44, 352-355.	21.4	144
20	Whole-Genome Sequencing Shows That Patient-to-Patient Transmission Rarely Accounts for Acquisition of Staphylococcus aureus in an Intensive Care Unit. Clinical Infectious Diseases, 2014, 58, 609-618.	5.8	142
21	Recombination and Population Structure in Salmonella enterica. PLoS Genetics, 2011, 7, e1002191.	3.5	135
22	Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nature Communications, 2014, 5, 3956.	12.8	128
23	PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity. Molecular Biology and Evolution, 2018, 35, 719-733.	8.9	122
24	Asymptomatic Clostridium difficile Colonisation and Onward Transmission. PLoS ONE, 2013, 8, e78445.	2.5	113
25	Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.	12.6	111
26	Mind the Gaps: Evidence of Bias in Estimates of Multiple Sequence Alignments. Molecular Biology and Evolution, 2007, 24, 2433-2442.	8.9	108
27	Recombinational Switching of the Clostridium difficile S-Layer and a Novel Glycosylation Gene Cluster Revealed by Large-Scale Whole-Genome Sequencing. Journal of Infectious Diseases, 2013, 207, 675-686.	4.0	93
28	Severe infections emerge from commensal bacteria by adaptive evolution. ELife, 2017, 6, .	6.0	93
29	Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses. Journal of Clinical Microbiology, 2015, 53, 2122-2131.	3.9	84
30	Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Scientific Reports, 2019, 9, 7081.	3.3	75
31	Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver. Virus Evolution, 2018, 4, vey007.	4.9	64
32	A Modified RNA-Seq Approach for Whole Genome Sequencing of RNA Viruses from Faecal and Blood Samples. PLoS ONE, 2013, 8, e66129.	2.5	62
33	Accuracy of Different Bioinformatics Methods in Detecting Antibiotic Resistance and Virulence Factors from Staphylococcus aureus Whole-Genome Sequences. Journal of Clinical Microbiology, 2018, 56, .	3.9	61
34	The impact of viral mutations on recognition by SARS-CoV-2 specific TÂcells. IScience, 2021, 24, 103353.	4.1	57
35	Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis. Nature Communications, 2019, 10, 1411.	12.8	50
36	A Comprehensive Genomics Solution for HIV Surveillance and Clinical Monitoring in Low-Income Settings. Journal of Clinical Microbiology, 2020, 58, .	3.9	39

TANYA GOLUBCHIK

#	Article	IF	CITATIONS
37	A highly virulent variant of HIV-1 circulating in the Netherlands. Science, 2022, 375, 540-545.	12.6	39
38	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nature Communications, 2021, 12, 5861.	12.8	38
39	Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. Journal of Hospital Infection, 2014, 86, 83-89.	2.9	31
40	Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation. Journal of Clinical Microbiology, 2017, 55, 2188-2197.	3.9	26
41	Identification of Antigens Specific to Non-Tuberculous Mycobacteria: The Mce Family of Proteins as a Target of T Cell Immune Responses. PLoS ONE, 2011, 6, e26434.	2.5	20
42	Virological Characterization of Critically III Patients With COVID-19 in the United Kingdom: Interactions of Viral Load, Antibody Status, and B.1.1.7 Infection. Journal of Infectious Diseases, 2021, 224, 595-605.	4.0	20
43	Phylogenetic and Demographic Characterization of Directed HIV-1 Transmission Using Deep Sequences from High-Risk and General Population Cohorts/Groups in Uganda. Viruses, 2020, 12, 331.	3.3	17
44	Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus. Nature Communications, 2021, 12, 5125.	12.8	16
45	Performance of a high-throughput next-generation sequencing method for analysis of HIV drug resistance and viral load. Journal of Antimicrobial Chemotherapy, 2020, 75, 3510-3516.	3.0	13
46	Epstein-Barr virus reactivation in sepsis due to community-acquired pneumonia is associated with increased morbidity and an immunosuppressed host transcriptomic endotype. Scientific Reports, 2020, 10, 9838.	3.3	13
47	Mapping of HIV-1C Transmission Networks Reveals Extensive Spread of Viral Lineages Across Villages in Botswana Treatment-as-Prevention Trial. Journal of Infectious Diseases, 2020, 222, 1670-1680.	4.0	12
48	High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment. Journal of Antimicrobial Chemotherapy, 2020, 75, 1575-1579.	3.0	12
49	Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/Ya Tsie trial. ELife, 2022, 11, .	6.0	12
50	Simultaneous Viral Whole-Genome Sequencing and Differential Expression Profiling in Respiratory Syncytial Virus Infection of Infants. Journal of Infectious Diseases, 2020, 222, S666-S671.	4.0	11
51	Draft Genome Sequences of 64 Type Strains of 50 Species and 25 Subspecies of the Genus Staphylococcus Rosenbach 1884. Microbiology Resource Announcements, 2019, 8, .	0.6	7
52	Oxford Screening CSF and Respiratory samples (â€~OSCAR'): results of a pilot study to screen clinical samples from a diagnostic microbiology laboratory for viruses using Illumina next generation sequencing. BMC Research Notes, 2018, 11, 120.	1.4	6
53	Highly Sensitive Lineage Discrimination of SARS-CoV-2 Variants through Allele-Specific Probe PCR. Journal of Clinical Microbiology, 2022, 60, e0228321.	3.9	5
54	Recombination Analysis of Near Full-Length HIV-1 Sequences and the Identification of a Potential New Circulating Recombinant Form from Rakai, Uganda. AIDS Research and Human Retroviruses, 2020, 36, 467-474.	1.1	4

#	Article	IF	CITATIONS
55	Phylogenetic estimation of the viral fitness landscape of HIV-1 set-point viral load. Virus Evolution, 2022, 8, veac022.	4.9	1
56	Genotypic prediction of anti-microbial susceptibilities in Staphylococcus aureus. Journal of Infection, 2013, 67, 345-346.	3.3	0
57	Reply to Mills and Linkin. Clinical Infectious Diseases, 2014, 59, 752-753.	5.8	0