Chen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8505290/publications.pdf

Version: 2024-02-01

567281 713466 21 665 15 21 citations h-index g-index papers 21 21 21 547 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans. Chemosphere, 2022, 287, 132019.	8.2	10
2	Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans. Science of the Total Environment, 2022, 811, 152350.	8.0	34
3	Tris(1,3-dichloro-2-propyl) phosphate reduces longevity through a specific microRNA-mediated DAF-16/FoxO in an unconventional insulin/insulin-like growth factor‑1 signaling pathway. Journal of Hazardous Materials, 2022, 425, 128043.	12.4	8
4	Humic acid promoted activation of peroxymonosulfate by Fe3S4 for degradation of 2,4,6-trichlorophenol: An experimental and theoretical study. Journal of Hazardous Materials, 2022, 434, 128913.	12.4	38
5	Polystyrene Nanoplastics Toxicity to Zebrafish: Dysregulation of the Brain–Intestine–Microbiota Axis. ACS Nano, 2022, 16, 8190-8204.	14.6	72
6	The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environmental Geochemistry and Health, 2021, 43, 461-473.	3.4	12
7	Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere, 2021, 272, 129642.	8.2	57
8	Carbon nanotubes mediating nano α-FeOOH reduction by Shewanella putrefaciens CN32 to enhance tetrabromobisphenol A removal. Science of the Total Environment, 2021, 777, 146183.	8.0	12
9	Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans. Journal of Hazardous Materials, 2021, 419, 126482.	12.4	54
10	Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). Science of the Total Environment, 2020, 700, 134500.	8.0	28
11	Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera) Tj ETQq1 1	0.784314	rgBT/Overlo
12	Life cycle exposure to propiconazole reduces fecundity by disrupting the steroidogenic pathway and altering DNA methylation in zebrafish (Danio rerio). Environment International, 2020, 135, 105384.	10.0	37
13	Microplastics profile in a typical urban river in Beijing. Science of the Total Environment, 2020, 743, 140708.	8.0	67
14	Potential Link between Equol Pollution and Field-Observed Intersex in Wild So-iuy Mullets (<i>Mugil) Tj ETQq0 0</i>	O rgBT/Ov	erlock 10 Tf 5
15	Chronic exposure of zebrafish (Danio rerio) to flutolanil leads to endocrine disruption and reproductive disorders. Environmental Research, 2020, 184, 109310.	7.5	30
16	Adverse Effects of Triclosan and Binary Mixtures with $17\hat{l}^2$ -Estradiol on Testicular Development and Reproduction in Japanese Medaka ($\langle i \rangle$ Oryzias latipes $\langle j \rangle$) at Environmentally Relevant Concentrations. Environmental Science and Technology Letters, 2018, 5, 136-141.	8.7	21
17	Environmentally Relevant Concentrations of the Organophosphorus Flame Retardant Triphenyl Phosphate Impaired Testicular Development and Reproductive Behaviors in Japanese Medaka (<i>Oryzias) Tj ETQ</i>	q18170.78	43184 rgBT <u> </u>
18	Equol Induces Gonadal Intersex in Japanese Medaka ($<$ i $>Oryzias$ latipes $<$ /i $>)$ at Environmentally Relevant Concentrations: Comparison with $17\hat{l}^2$ -Estradiol. Environmental Science & Environm	10.0	24

#	Article	IF	CITATIONS
19	<i>p</i> , <i>p</i> , <i>p</i> ê²-DDE Induces Gonadal Intersex in Japanese Medaka (<i>Oryzias latipes</i>) at Environmentally Relevant Concentrations: Comparison with <i>o</i> , <i>p</i> ê²-DDT. Environmental Science & Technology, 2016, 50, 462-469.	10.0	24
20	Biosensor Medaka for Monitoring Intersex Caused by Estrogenic Chemicals. Environmental Science & Eamp; Technology, 2014, 48, 140203084006000.	10.0	15
21	Toxicity assessments with Daphnia magna of Guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities. Ecotoxicology and Environmental Safety, 2013, 98, 339-344.	6.0	49