Sarah Ferber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8504632/publications.pdf

Version: 2024-02-01

		471477	526264
30	1,984	17	27
papers	citations	h-index	g-index
39	39	39	1353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improvement of the therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet. Stem Cell Research and Therapy, 2021, 12, 3.	5.5	8
2	Phenotypic assessment of liver-derived cell cultures during in vitro expansion. Regenerative Medicine, 2021, 16, 33-46.	1.7	2
3	The effect of liver donors' age, gender and metabolic state on pancreatic lineage activation. Regenerative Medicine, 2021, 16, 19-31.	1.7	3
4	Spheroid Fabrication Using Concave Microwells Enhances the Differentiation Efficacy and Function of Insulin-Producing Cells via Cytoskeletal Changes. Cells, 2020, 9, 2551.	4.1	5
5	Liver to Pancreas Transdifferentiation. Current Diabetes Reports, 2019, 19, 76.	4.2	16
6	The role of the vasculature niche on insulin-producing cells generated by transdifferentiation of adult human liver cells. Stem Cell Research and Therapy, 2019, 10, 53.	5.5	8
7	The Wnt∫l²â€catenin pathway determines the predisposition and efficiency of liverâ€toâ€pancreas reprogramming. Hepatology, 2018, 68, 1589-1603.	7.3	18
8	Transdifferentiation of Extra-Pancreatic Tissues for Cell Replacement Therapy for Diabetes. Pancreatic Islet Biology, 2016, , 193-215.	0.3	0
9	Reprogramming of liver cells into insulin-producing cells. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 873-882.	4.7	19
10	The Temporal and Hierarchical Control of Transcription Factors-Induced Liver to Pancreas Transdifferentiation. PLoS ONE, 2014, 9, e87812.	2.5	56
11	The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Research and Treatment, 2012, 132, 449-461.	2.5	78
12	Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells. Journal of Transplantation, 2011, 2011, 1-12.	0.5	26
13	Ectopic PDX-1 Expression Directly Reprograms Human Keratinocytes along Pancreatic Insulin-Producing Cells Fate. PLoS ONE, 2011, 6, e26298.	2.5	38
14	NKX6.1 Promotes PDX-1-Induced Liver to Pancreatic \hat{l}^2 -Cells Reprogramming. Cellular Reprogramming, 2010, 12, 655-664.	0.9	60
15	Adult Cell Fate Reprogramming: Converting Liver to Pancreas. Methods in Molecular Biology, 2010, 636, 251-283.	0.9	11
16	Adult Cell Reprogramming: Using Nonpancreatic Cell Sources to Generate Surrogate Beta Cells for Treatment of Diabetes., 2010,, 183-202.		0
17	Exendin-4 Promotes Liver Cell Proliferation and Enhances the PDX-1-induced Liver to Pancreas Transdifferentiation Process. Journal of Biological Chemistry, 2009, 284, 33509-33520.	3.4	85
18	Use of Extra-Pancreatic Tissues for Cell Replacement Therapy for Diabetes. , 2008, , 285-312.		1

#	Article	IF	CITATIONS
19	Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. Journal of Autoimmunity, 2007, 28, 134-142.	6.5	72
20	Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein \hat{l}^2 . Hepatology, 2007, 46, 898-905.	7.3	61
21	Regenerative medicine: using liver to generate pancreas for treating diabetes. Israel Medical Association Journal, 2006, 8, 430-4.	0.1	20
22	Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7964-7969.	7.1	265
23	Redox-Mediated Enrichment of Self-Renewing Adult Human Pancreatic Cells That Possess Endocrine Differentiation Potential. Pancreas, 2004, 29, e64-e76.	1.1	45
24	New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends in Endocrinology and Metabolism, 2003, 14, 460-466.	7.1	50
25	Functional, Persistent, and Extended Liver to Pancreas Transdifferentiation. Journal of Biological Chemistry, 2003, 278, 31950-31957.	3.4	245
26	Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Medicine, 2000, 6, 568-572.	30.7	727
27	IMPLANTATION OF RAT INSULINOMA CELL LINE INTO CYCLOSPORINE TREATED RATS. EFFECT OF THE IN VIVO ENVIRONMENT ON ??-CELL SPECIFIC GENE EXPRESSION1. Transplantation, 2000, 69, 1464-1470.	1.0	4
28	Increase in PDX-1 Levels Suppresses Insulin Gene Expression in RIN 1046–38 Cells*. Endocrinology, 1999, 140, 3311-3317.	2.8	29
29	Increase in PDX-1 Levels Suppresses Insulin Gene Expression in RIN 1046-38 Cells. Endocrinology, 1999, 140, 3311-3317.	2.8	11
30	Vanadate normalizes hyperglycemia and phosphoenolpyruvate carboxykinase mRNA levels in mice. Metabolism: Clinical and Experimental, 1994, 43, 1346-1354.	3.4	21