
Jan Wiersig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8504580/publications.pdf Version: 2024-02-01

IAN WIEDSIC

#	Article	IF	CITATIONS
1	Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548, 192-196.	13.7	1,242
2	Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Physical Review Letters, 2014, 112, .	2.9	640
3	Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Reviews of Modern Physics, 2015, 87, 61-111.	16.4	520
4	Chiral modes and directional lasing at exceptional points. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6845-6850.	3.3	422
5	Combining Directional Light Output and Ultralow Loss in Deformed Microdisks. Physical Review Letters, 2008, 100, 033901.	2.9	293
6	Sensors operating at exceptional points: General theory. Physical Review A, 2016, 93, .	1.0	286
7	Boundary element method for resonances in dielectric microcavities. Journal of Optics, 2003, 5, 53-60.	1.5	244
8	Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358, 344-347.	6.0	239
9	Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003, 67, .	1.0	222
10	Formation of Long-Lived, Scarlike Modes near Avoided Resonance Crossings in Optical Microcavities. Physical Review Letters, 2006, 97, 253901.	2.9	215
11	Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460, 245-249.	13.7	194
12	Photon Statistics of Semiconductor Microcavity Lasers. Physical Review Letters, 2007, 98, 043906.	2.9	191
13	Whispering-gallery mode resonators for highly unidirectional laser action. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22407-22412.	3.3	185
14	Unidirectional light emission from high-Qmodes in optical microcavities. Physical Review A, 2006, 73, .	1.0	176
15	Review of exceptional point-based sensors. Photonics Research, 2020, 8, 1457.	3.4	174
16	Semiconductor model for quantum-dot-based microcavity lasers. Physical Review A, 2007, 75, .	1.0	155
17	Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Physical Review A, 2011, 84, .	1.0	146
18	Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Physical Review A, 2008, 78, .	1.0	129

#	Article	IF	CITATIONS
19	Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Nature Communications, 2016, 7, 11540.	5.8	120
20	Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity. Physical Review Letters, 2010, 105, 103902.	2.9	119
21	Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity. Applied Physics Letters, 2009, 94, .	1.5	103
22	Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Physical Review A, 2011, 84, .	1.0	78
23	Goos-Hächen shift and localization of optical modes in deformed microcavities. Physical Review E, 2008, 78, 016201.	0.8	72
24	Sub- and Superradiance in Nanolasers. Physical Review Applied, 2015, 4, .	1.5	71
25	Prospects and fundamental limits in exceptional point-based sensing. Nature Communications, 2020, 11, 2454.	5.8	69
26	Ray-wave correspondence in limaçon-shaped semiconductor microcavities. Physical Review A, 2009, 80,	1.0	65
27	Spectral Correlation in Incommensurate Multiwalled Carbon Nanotubes. Physical Review Letters, 2003, 90, 026601.	2.9	60
28	Fractal Weyl law for chaotic microcavities: Fresnel's laws imply multifractal scattering. Physical Review E, 2008, 77, 036205.	0.8	59
29	Elliptic Quantum Billiard. Annals of Physics, 1997, 260, 50-90.	1.0	56
30	Luminescence of a semiconductor quantum dot system. European Physical Journal B, 2006, 50, 411-418.	0.6	52
31	Quality-factor enhancement of supermodes in coupled microdisks. Optics Letters, 2011, 36, 1317.	1.7	51
32	Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition. Physical Review A, 2013, 87, .	1.0	51
33	Rotating Optical Microcavities with Broken Chiral Symmetry. Physical Review Letters, 2015, 114, 053903.	2.9	51
34	Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers. Applied Physics Letters, 2012, 101, .	1.5	49
35	Local Chirality of Optical Resonances in Ultrasmall Resonators. Physical Review Letters, 2012, 108, 253902.	2.9	47
36	Quality factors and dynamical tunneling in annular microcavities. Physical Review A, 2009, 79, .	1.0	44

#	Article	IF	CITATIONS
37	Confined optical modes in monolithic II-VI pillar microcavities. Applied Physics Letters, 2006, 88, 051101.	1.5	43
38	Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Physical Review A, 2014, 89, .	1.0	42
39	Pair of Exceptional Points in a Microdisk Cavity under an Extremely Weak Deformation. Physical Review Letters, 2018, 120, 093902.	2.9	40
40	Expectation value based equation-of-motion approach for open quantum systems: A general formalism. Physical Review B, 2014, 89, .	1.1	38
41	Robustness of exceptional-point-based sensors against parametric noise: The role of Hamiltonian and Liouvillian degeneracies. Physical Review A, 2020, 101, .	1.0	38
42	Radiative emission dynamics of quantum dots in a single cavity micropillar. Physical Review B, 2006, 74,	1.1	37
43	Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes. Physical Review A, 2013, 88, .	1.0	37
44	MULTISTABILITY AND NONSMOOTH BIFURCATIONS IN THE QUASIPERIODICALLY FORCED CIRCLE MAP. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 3085-3105.	0.7	33
45	Deformed microcavity quantum cascade lasers with directional emission. New Journal of Physics, 2009, 11, 125018.	1.2	33
46	Devil's Staircase in the Magnetoresistance of a Periodic Array of Scatterers. Physical Review Letters, 2001, 87, .	2.9	32
47	Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots. Physical Review B, 2007, 76, .	1.1	31
48	Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor. Physical Review Applied, 2018, 9, .	1.5	31
49	Correlated photon pairs from single (In,Ga)Asâ^•GaAs quantum dots in pillar microcavities. Journal of Applied Physics, 2005, 97, 023101.	1.1	30
50	Non-Hermitian-transport effects in coupled-resonator optical waveguides. Physical Review A, 2014, 90,	1.0	29
51	Exceptional points of third-order in a layered optical microdisk cavity. New Journal of Physics, 2018, 20, 083016.	1.2	29
52	Current Rectification by Spontaneous Symmetry Breaking in Coupled Nanomechanical Shuttles. Physical Review Letters, 2006, 97, 216804.	2.9	27
53	Frobenius–Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics. New Journal of Physics, 2016, 18, 015005.	1.2	27
54	Spectral properties of quantized barrier billiards. Physical Review E, 2002, 65, 046217.	0.8	26

#	Article	IF	CITATIONS
55	Mode selection in electrically driven quantum dot microring cavities. Optics Express, 2013, 21, 15951.	1.7	25
56	Unidirectional light emission from low-index polymer microlasers. Applied Physics Letters, 2015, 106, .	1.5	25
57	Decay suppression of spontaneous emission of a single emitter in a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q</mml:mi> cavity at exceptional points. Physical Review Research, 2020, 2, .</mml:math 	1.3	25
58	Leaking billiards. Physical Review E, 2007, 75, 046204.	0.8	24
59	Influence of the spontaneous optical emission factorî²on the first-order coherence of a semiconductor microcavity laser. Physical Review B, 2008, 78 Lasing properties of InP/(Ca <mmi:math)="" 0="" etqq0="" rgb1<="" td="" tj="" xmins:mmi="http://www.w3.org/1998/Math/MathML"><td>1.1 [/Overlock</td><td>24 210 Tf 50 567</td></mmi:math>	1.1 [/Overlock	24 210 Tf 50 567
60		1.1	24
61	quantu Wavelength-scale deformed microdisk lasers. Physical Review A, 2011, 84, .	1.0	24
62	Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method. Physical Review B, 2013, 87, .	1.1	24
63	Green laser emission from monolithic II-VI-based pillar microcavities near room temperature. Applied Physics Letters, 2008, 92, 031101.	1.5	23
64	Perturbative approach to optical microdisks with a local boundary deformation. Physical Review A, 2012, 85, .	1.0	23
65	Interplay of Goos-HÃ ¤ chen shift and boundary curvature in deformed microdisks. Physical Review E, 2010, 82, 026202.	0.8	22
66	Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Science Bulletin, 2018, 63, 1096-1100.	4.3	22
67	Transporting the Optical Chirality through the Dynamical Barriers in Optical Microcavities. Laser and Photonics Reviews, 2018, 12, 1800027.	4.4	22
68	High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities. Physical Review A, 2019, 100, .	1.0	22
69	Enhanced correlated photon pair emission from a pillar microcavity. New Journal of Physics, 2004, 6, 91-91.	1.2	21
70	Whispering gallery modes formed by partial barriers in ultrasmall deformed microdisks. Physical Review E, 2011, 84, 035202.	0.8	21
71	Resonant modes in monolithic nitride pillar microcavities. European Physical Journal B, 2005, 48, 291-294.	0.6	20
72	Controlling multimode coupling by boundary-wave scattering. Physical Review A, 2013, 88, .	1.0	20

#	Article	IF	CITATIONS
73	Physics and Applications of Highâ€Î² Micro―and Nanolasers. Advanced Optical Materials, 2021, 9, 2100415.	3.6	20
74	Discrete breathers in ac-driven nanoelectromechanical shuttle arrays. Applied Physics Letters, 2008, 93, 222110.	1.5	19
75	Lifetime statistics in chaotic dielectric microresonators. Physical Review A, 2009, 79, .	1.0	19
76	Light emission of a scarlike mode with assistance of quasiperiodicity. Physical Review A, 2011, 84, .	1.0	19
77	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi>spoiling in deformed optical microdisks due to resonance-assisted tunneling. Physical Review E, 2016, 94, 022202.</mml:math 	0.8	19
78	Perturbation theory for asymmetric deformed microdisk cavities. Physical Review A, 2016, 94, .	1.0	19
79	Singular continuous spectra in a pseudointegrable billiard. Physical Review E, 2000, 62, R21-R24.	0.8	18
80	Output Characteristics of Pulsed and Continuous-Wave-Excited Quantum-Dot Microcavity Lasers. Physical Review Letters, 2008, 101, 067401.	2.9	18
81	Properties and prospects of blue–green emitting Il–Vlâ€based monolithic microcavities. Physica Status Solidi (B): Basic Research, 2009, 246, 255-271.	0.7	18
82	Perturbative analysis of whispering-gallery modes in limaçon-shaped microcavities. Physical Review A, 2014, 89, .	1.0	18
83	Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation. Physical Review X, 2017, 7, .	2.8	18
84	Superthermal photon bunching in terms of simple probability distributions. Physical Review A, 2018, 97,	1.0	18
85	Exceptional points by coupling of modes with different angular momenta in deformed microdisks: A perturbative analysis. Physical Review A, 2018, 98, .	1.0	18
86	Ray-wave correspondence in an unstable quasistadium laser resonator. Physical Review A, 2006, 73, .	1.0	17
87	Marginally Unstable Periodic Orbits in Semiclassical Mushroom Billiards. Physical Review Letters, 2009, 103, 154101.	2.9	17
88	Non-Hermitian scattering on a tight-binding lattice. Physical Review A, 2020, 102, .	1.0	17
89	Measurement of the Goos–Hächen shift in a microwave cavity. New Journal of Physics, 2011, 13, 023013.	1.2	16
90	Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks. Photonics Research, 2019, 7, 464.	3.4	16

#	Article	IF	CITATIONS
91	Quantum-classical correspondence in polygonal billiards. Physical Review E, 2001, 64, 026212.	0.8	15
92	Nonorthogonality constraints in open quantum and wave systems. Physical Review Research, 2019, 1, .	1.3	15
93	Response strengths of open systems at exceptional points. Physical Review Research, 2022, 4, .	1.3	14
94	Spherical Pendulum, Actions, and Spin. The Journal of Physical Chemistry, 1996, 100, 19124-19135.	2.9	13
95	Triaxial Ellipsoidal Quantum Billiards. Annals of Physics, 1999, 276, 64-110.	1.0	13
96	Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers. Physical Review A, 2015, 91, .	1.0	13
97	Regular-Orbit-Engineered Chaotic Photon Transport in Mixed Phase Space. Physical Review Letters, 2019, 123, 173903.	2.9	13
98	Computation of the coherence time of quantumâ€dot microcavity lasers including photon–carrier and photon–photon correlations. Physica Status Solidi (B): Basic Research, 2011, 248, 883-886.	0.7	11
99	Bimodal behavior of microlasers investigated with a two-channel photon-number-resolving transition-edge sensor system. Physical Review Research, 2021, 3, .	1.3	11
100	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space. Physical Review Letters, 2021, 127, 273902.	2.9	11
101	Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators: Comment. Optics Express, 2008, 16, 5874.	1.7	10
102	Effect of direct dissipative coupling of two competing modes on intensity fluctuations in a quantum-dot-microcavity laser. Physical Review A, 2016, 94, .	1.0	10
103	Pseudointegrable Andreev billiard. Physical Review E, 2002, 65, 036221.	0.8	9
104	Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers. New Journal of Physics, 2013, 15, 013060.	1.2	9
105	Expectation value based cluster expansion. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1242-1245.	0.8	9
106	Frequency splittings in deformed optical microdisk cavities. Physical Review A, 2017, 96, .	1.0	9
107	Semiclassical evaluation of frequency splittings in coupled optical microdisks. Optics Express, 2013, 21, 24240.	1.7	8
108	Adiabatic formation of high-Qmodes by suppression of chaotic diffusion in deformed microdiscs. New Journal of Physics, 2013, 15, 113058.	1.2	8

#	Article	IF	CITATIONS
109	Energy Surfaces of Ellipsoidal Billiards. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1996, 51, 219-241.	0.7	7
110	Optomechanical probes of resonances in amplifying microresonators. Physical Review A, 2004, 70, .	1.0	7
111	Microscopic theory of first-order coherence in microcavity lasers based on semiconductor quantum dots. Physical Review B, 2010, 82, .	1.1	7
112	Inverse problem for light emission from weakly deformed microdisk cavities. Physical Review A, 2016, 94, .	1.0	7
113	Optical microdisk cavities with rough sidewalls: A perturbative approach based on weak boundary deformations. Physical Review A, 2017, 95, .	1.0	7
114	Computer-aided cluster expansion: An efficient algebraic approach for open quantum many-particle systems. Computer Physics Communications, 2017, 212, 210-219.	3.0	7
115	Determination of the full statistics of quantum observables using the maximum-entropy method. Physical Review A, 2018, 98, .	1.0	7
116	Low-rank perturbations and the spectral statistics of pseudointegrable billiards. Physical Review E, 2003, 68, 065205.	0.8	6
117	Nonlinear dynamical tunneling of optical whispering gallery modes in the presence of a Kerr nonlinearity. Physical Review A, 2016, 94, .	1.0	6
118	Role of nonorthogonality of energy eigenstates in quantum systems with localized losses. Physical Review A, 2018, 98, .	1.0	6
119	Corrected perturbation theory for transverse-electric whispering-gallery modes in deformed microdisks. Physical Review A, 2019, 99, .	1.0	6
120	Review on unidirectional light emission from ultralow-loss modes in deformed microdisks. , 2011, , 109-152.		6
121	ELLIPSOIDAL BILLIARDS WITH ISOTROPIC HARMONIC POTENTIALS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2075-2098.	0.7	5
122	Evanescent wave approach to diffractive phenomena in convex billiards with corners. Physical Review E, 2003, 67, 046221.	0.8	5
123	Electromagnetic modes in cavities made of negative-index metamaterials. Physical Review A, 2010, 81, .	1.0	5
124	Qualityâ€factor enhancement of optical modes mediated by strong coupling in micronâ€size semiconductor disks. Physica Status Solidi (B): Basic Research, 2012, 249, 925-928.	0.7	5
125	Separatrix modes in weakly deformed microdisk cavities. Optics Express, 2017, 25, 8048.	1.7	5
126	Microstar cavities: An alternative concept for the confinement of light. Physical Review Research, 2020, 2, .	1.3	5

#	Article	IF	CITATIONS
127	Fine structure of mode-locked regions of the quasi-periodically forced circle map. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257, 65-69.	0.9	4
128	Strong photon bunching in a quantum-dot-based two-mode microcavity laser. Physica Status Solidi (B): Basic Research, 2013, 250, 1777-1780.	0.7	4
129	Chaotic-To-Regular Tunneling: Transporting the Optical Chirality through the Dynamical Barriers in Optical Microcavities (Laser Photonics Rev. 12(10)/2018). Laser and Photonics Reviews, 2018, 12, 1870045.	4.4	4
130	Microdisk cavities with a Brewster notch. Physical Review Research, 2021, 3, .	1.3	4
131	Mode-locking in a periodic array of scatterers. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 256-259.	1.3	3
132	Efficient coupling into confined optical modes of ZnSe-based pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 844-848.	0.7	3
133	On the way to InGaN quantum dots embedded into monolithic nitride cavities. Physica Status Solidi (B): Basic Research, 2007, 244, 1806-1809.	0.7	3
134	Robust lasing of modes localized on marginally unstable periodic orbits. Physical Review A, 2020, 101, .	1.0	3
135	Resonance Zones in Action Space. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2001, 56, 537-556.	0.7	2
136	Spectral properties of incommensurate double-walled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 666-669.	1.3	2
137	Crack free monolithic nitride vertical-cavity surface-emitting laser structures and pillar microcavities. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1749-1753.	0.8	2
138	Laser theory for semiconductor quantum dots in microcavities. Superlattices and Microstructures, 2008, 43, 470-473.	1.4	2
139	Wide-Bandgap Quantum Dot Based Microcavity VCSEL Structures. , 2008, , 29-41.		2
140	Emission properties of ZnSe-based pillar microcavities at elevated temperatures. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 508-511.	0.8	2
141	Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whispering-Gallery Microcavities. Springer Tracts in Modern Physics, 2018, , 155-184.	0.1	2
142	Quantum Statistical Properties of the Light Emission from Quantum Dots in Microcavities. Nanoscience and Technology, 2009, , 1-30.	1.5	1
143	Information-theoretical approach to the many-particle hierarchy problem. Physical Review A, 2019, 100,	1.0	1
144	Weakly deformed optical microdisks: A third-order perturbation theory for transverse-magnetic modes. Journal of Physics Communications, 2020, 4, 105020.	0.5	1

#	Article	IF	CITATIONS
145	Ray-wave correspondence in a fully chaotic quasi-stadium laser resonator. , 2004, , .		1
146	Microlasers based on nanoporous materials. , 0, , .		0
147	Single-Photon And Photon Pair Emission From Individual (In,Ga)As Quantum Dots. AIP Conference Proceedings, 2005, , .	0.3	0
148	Microscopic theory of photoluminescence from semiconductor quantum dots in microcavities. , 0, , .		0
149	Optical properties of semiconductor quantum dots and pillar microcavities. AIP Conference Proceedings, 2005, , .	0.3	0
150	Microscopic theory of quantum dot luminescence spectra. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2385-2388.	0.8	0
151	Avoided resonance crossings and photon statistics in semiconductor microcavity lasers. , 2007, , .		0
152	Photon emission statistics and coherence properties of high-ß semiconductor microcavity lasers. , 2007, , .		0
153	Directional Light Output from a Circular Microdisk Laser. , 2007, , .		0
154	A Semiconductor Theory for Quantum-Dot Microcavity Lasers. AIP Conference Proceedings, 2007, , .	0.3	0
155	Coherence properties and dynamical photon correlations of quantumâ€dotâ€based microcavity lasers. Physica Status Solidi (B): Basic Research, 2009, 246, 273-276.	0.7	0
156	Coherence length of high-βsemiconductor microcavity lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 568-571.	0.8	0
157	Ultrafast intensity correlation measurements of quantum dot microcavity lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 399-402.	0.8	0
158	Deformed wavelength-scale microdisk lasers with quantum dot emitters. , 2012, , 225-251.		0
159	Exploring Far-field Pattern of Asymmetric Open Microcavities for Sensitive Rotation Detection. , 2014, ,		0
160	Publisher's Note: Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers [Phys. Rev. A 91 , 043840 (2015)]. Physical Review A, 2015, 91, .	1.0	0
161	Pitfalls in the theory of carrier dynamics in semiconductor quantum dots: Single-particle basis versus the many-particle configuration basis. Physical Review B, 2017, 95, .	1.1	0
162	Exceptional Points in Whispering-Gallery Microcavities. , 2018, , .		0

#	Article	IF	CITATIONS
163	Morphology of wetting-layer states in a simple quantum-dot wetting-layer model. Journal of Physics Condensed Matter, 2020, 32, 075301.	0.7	О
164	Freeâ€Standing ZnSeâ€Based Microdisk Resonators: Influence of Edge Roughness on the Optical Quality and Reducing Degradation with Supported Geometry. Physica Status Solidi (B): Basic Research, 0, , 2100249.	0.7	0
165	Optical modes of semiconductor micropillars: a theory-experiment comparison. , 2004, , .		Ο
166	Avoided resonance crossings in optical microcavities: unidirectional light emission and scar formation. , 2007, , .		0
167	Directional micro-cavity lasers with Lima $ ilde{A}$ son-shaped chaotic resonator. , 2009, , .		О
168	Highly unidirectional whispering gallery mode lasers. , 2011, , .		0
169	Quantum-dot microcavity lasers with superradiant coupling and non-classical light emission. , 2014, , .		Ο
170	Giant Photon Bunching and Quantum Correlations in Superradiant Quantum-Dot Microcavity Lasers. , 2017, , .		0
171	Mode switching in bimodal microcavities and its connection to Bose condensation. , 2017, , .		Ο
172	Regular-orbit engineered momentum transformation in the mixed phase space of an asymmetric microcavity. , 2019, , .		0
173	Emission Characteristics, Photon Statistics and Coherence Properties of high-β Semiconductor Micropillar Lasers. , 2008, , 3-15.		Ο
174	Intrinsic Non-Exponential Decay of Time-Resolved Photoluminescence from Semiconductor Quantum Dots. Advances in Solid State Physics, 0, , 91-102.	0.8	0
175	Microdisk cavities based on transmission at Brewster's angle. , 2021, , .		Ο
176	Resonance-assisted Tunneling in Weakly Deformed Microdisk Cavities. , 2020, , 315-358.		0