Marcos J L Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8504531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoholes As Nanochannels: Flow-through Plasmonic Sensing. Analytical Chemistry, 2009, 81, 4308-4311.	3.2	264
2	Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance. Journal of the American Chemical Society, 2009, 131, 436-437.	6.6	131
3	Largeâ€Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonicâ€Enhanced Photovoltaics. Advanced Functional Materials, 2010, 20, 3918-3924.	7.8	125
4	Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics, 2010, 181, 586-591.	1.3	71
5	Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst, The, 2013, 138, 1450.	1.7	58
6	Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sensors and Actuators B: Chemical, 2013, 178, 366-370.	4.0	43
7	Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sensors and Actuators B: Chemical, 2021, 339, 129875.	4.0	40
8	Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays. Applied Physics Letters, 2008, 92, .	1.5	37
9	Supramolecular Control in Nanostructured Film Architectures for Detecting Breast Cancer. ACS Applied Materials & Interfaces, 2015, 7, 11833-11841.	4.0	36
10	Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. Journal of Electroanalytical Chemistry, 2006, 591, 27-32.	1.9	34
11	Enhanced electrochromic properties of a polypyrrole–indigo carmine–gold nanoparticles nanocomposite. Physical Chemistry Chemical Physics, 2015, 17, 1234-1240.	1.3	32
12	SPR based biosensor using surface relief grating in transmission mode. Sensors and Actuators B: Chemical, 2012, 174, 270-273.	4.0	25
13	TiO ₂ nanotubes sensitized with CdSe via RF magnetron sputtering for photoelectrochemical applications under visible light irradiation. Physical Chemistry Chemical Physics, 2014, 16, 9148-9153.	1.3	25
14	Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations. Analytica Chimica Acta, 2019, 1084, 71-77.	2.6	23
15	A new approach to immobilize poly(vinyl alcohol) on poly(dimethylsiloxane) resulting in low protein adsorption. Applied Surface Science, 2011, 257, 10514-10519.	3.1	21
16	Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix. Physical Chemistry Chemical Physics, 2012, 14, 2050.	1.3	21
17	Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles. Thin Solid Films, 2009, 517, 5523-5529.	0.8	19
18	Optical pH sensitive material based on bromophenol blue-doped polypyrrole. Sensors and Actuators B: Chemical, 2009, 137, 426-431.	4.0	18

MARCOS J L SANTOS

#	Article	IF	CITATIONS
19	Impact of Zr precursor on the electrochemical properties of V2O5 sol-gel films. Journal of Electroanalytical Chemistry, 2019, 839, 67-74.	1.9	12
20	Probing the Functionalization of Gold Surfaces and Protein Adsorption by PMâ€IRRAS. ChemPhysChem, 2011, 12, 1736-1740.	1.0	11
21	Tunable graphene oxide inter-sheet distance to obtain graphene oxide–silver nanoparticle hybrids. New Journal of Chemistry, 2019, 43, 1285-1290.	1.4	11
22	Simple One-Step Method to Synthesize Polypyrrole-Indigo Carmine-Silver Nanocomposite. Journal of Chemistry, 2016, 2016, 1-8.	0.9	10
23	3-Mercaptopropionic, 4-Mercaptobenzoic, and Oleic Acid-Capped CdSe Quantum Dots: Interparticle Distance, Anchoring Groups, and Surface Passivation. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	10
24	Synergistic interplay of ionic liquid and dodecyl sulphate driving the oxidation state of polypyrrole based electrodes. New Journal of Chemistry, 2018, 42, 13828-13835.	1.4	9
25	SPE cartridges with a 3D graphene framework for extraction of triclosan in environmental water. Analytical Methods, 2020, 12, 666-672.	1.3	9
26	pH effects on the ohmic properties of bromophenol blue-doped polypyrrole film. Journal of the Brazilian Chemical Society, 2010, 21, 312-318.	0.6	8
27	Probing speciation inside a conducting polymer matrix by in situ spectroelectrochemistry. Electrochimica Acta, 2011, 56, 3101-3107.	2.6	8
28	Polypyrrole/Ionic Liquid/Au Nanoparticle Counter-Electrodes for Dye-Sensitized Solar Cells: Improving Charge-Transfer Resistance at the CE/Electrolyte Interface. Journal of the Electrochemical Society, 2019, 166, H3188-H3194.	1.3	8
29	Self-supported 3D reduced graphene oxide for solid-phase extraction: An efficient and low-cost sorbent for environmental contaminants in aqueous solution. Talanta, 2021, 235, 122750.	2.9	7
30	SPR Biosensors Based on Gold and Silver Nanoparticle Multilayer Films. Journal of the Brazilian Chemical Society, 2014, , .	0.6	6
31	Development of plasmonic substrates for biosensing. Proceedings of SPIE, 2008, , .	0.8	5
32	Peering into the Formation of Template-Free Hierarchical Flowerlike Nanostructures of SrTiO ₃ . ACS Omega, 2020, 5, 33007-33016.	1.6	5
33	Microfluidic and nanofluidic integration of plasmonic substrates for biosensing. Proceedings of SPIE, 2009, , .	0.8	4
34	Ionic silsesquioxane-capped Au nanoparticle powders: Application in P3HT/PCBM solar cells and the effect of the capping layer on surface plasmon dumping. Materials Chemistry and Physics, 2018, 206, 204-212.	2.0	4
35	Biaxial nanohole array sensing and optofluidic integration. , 2008, , .		3
36	Interface Dependent Plasmon Induced Enhancement in Dye-Sensitized Solar Cells Using Gold Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	3

MARCOS J L SANTOS

#	Article	IF	CITATIONS
37	Ressonância de plasmon de superfÃcie localizado e aplicação em biossensores e células solares. Quimica Nova, 0, , .	0.3	3
38	Simple Approach to Obtain a Localized Surface Plasmon Resonance Sensor Based on poly(dimethylsiloxane)/ Gold Nanoparticles Nanocomposite. Journal of Nanoscience and Nanotechnology, 2016, 16, 10080-10086.	0.9	1
39	Effect of gold nanoparticles on the structural and optical stability of poly (3-hexylthiophene). Polymer Degradation and Stability, 2016, 123, 62-68.	2.7	1
40	Eucalyptus Oil-Mediated Synthesis of Gold Nanoparticles. Journal of Chemistry and Chemical Engineering, 2018, 12, .	0.3	1
41	Nanohole Arrays as Optical and Fluidic Elements for Sensing. , 2008, , .		0
42	Real-time monitoring of self-assembled monolayer using biaxial nanohole arrays. , 2009, , .		0
43	Development of portable SPR sensor devices based on integrated periodic arrays of nanoholes. Proceedings of SPIE, 2009, , .	0.8	0
44	BIOSSENSORES PLASMÃ"NICOS BASEADOS EM ESPALHAMENTO RAMAN INTENSIFICADO POR SUPERFÃCIE UTILIZANDO NANOBASTÕES DE OUROǕ Quimica Nova, 2019, , .	0.3	0
45	Organic Semiconductors as Support Material for Electrochemical Biorecognition: Advantages, Properties, and Biofunctionalization. , 2022, , 81-100.		0