Ioannis N Athanasiadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8504502/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Big data in agriculture: Between opportunity and solution. Agricultural Systems, 2022, 195, 103298.	3.2	47
2	Machine learning for regional crop yield forecasting in Europe. Field Crops Research, 2022, 276, 108377.	2.3	36
3	Policy attention to climate change impacts, adaptation and vulnerability: a global assessment of National Communications (1994–2019). Climate Policy, 2022, 22, 97-111.	2.6	17
4	Simulation-assisted machine learning for operational digital twins. Environmental Modelling and Software, 2022, 148, 105274.	1.9	19
5	Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach. ISPRS International Journal of Geo-Information, 2022, 11, 366.	1.4	2
6	Mixing process-based and data-driven approaches in yield prediction. European Journal of Agronomy, 2022, 139, 126569.	1.9	8
7	Machine learning for large-scale crop yield forecasting. Agricultural Systems, 2021, 187, 103016.	3.2	107
8	Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate. Lecture Notes in Computer Science, 2021, , 45-54.	1.0	0
9	The Flows of Nature to People, and of People to Nature: Applying Movement Concepts to Ecosystem Services. Land, 2021, 10, 576.	1.2	10
10	Introducing digital twins to agriculture. Computers and Electronics in Agriculture, 2021, 184, 105942.	3.7	213
11	Crop2ML: An open-source multi-language modeling framework for the exchange and reuse of crop model components. Environmental Modelling and Software, 2021, 142, 105055.	1.9	10
12	Invited review: Toward a common language in data-driven mastitis detection research. Journal of Dairy Science, 2021, 104, 10449-10461.	1.4	4
13	The current and future uses of machine learning in ecosystem service research. Science of the Total Environment, 2021, 799, 149263.	3.9	25
14	A machine learning approach using random forest and LASSO to predict wine quality. International Journal of Sustainable Agricultural Management and Informatics, 2021, 7, 232.	0.1	2
15	A semantic approach for timeseries data fusion. Computers and Electronics in Agriculture, 2020, 169, 105171.	3.7	5
16	Improving predictive performance on survival in dairy cattle using an ensemble learning approach. Computers and Electronics in Agriculture, 2020, 177, 105675.	3.7	5
17	Machine learning for research on climate change adaptation policy integration: an exploratory UK case study. Regional Environmental Change, 2020, 20, 1.	1.4	31
18	Storing, combining and analysing turkey experimental data in the Big Data era. Animal, 2020, 14, 2397-2403.	1.3	3

IOANNIS N ATHANASIADIS

#	Article	IF	CITATIONS
19	Blockchain Applications in the Agri-Food Domain: The First Wave. Frontiers in Blockchain, 2020, 3, .	1.6	43
20	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	3.5	84
21	Investigation of Common Big Data Analytics and Decision-Making Requirements Across Diverse Precision Agriculture and Livestock Farming Use Cases. IFIP Advances in Information and Communication Technology, 2020, , 139-150.	0.5	3
22	Blockchain Applications in the Agri-Food Domain: The First Wave. Frontiers in Blockchain, 2020, 3, .	1.6	5
23	Defining and Classifying Infrastructural Contestation: Towards a Synergy Between Anthropology and Data Science. IFIP Advances in Information and Communication Technology, 2020, , 32-47.	0.5	3
24	Reuse of process-based models: automatic transformation into many programming languages and simulation platforms. In Silico Plants, 2020, 2, .	0.8	4
25	Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. PLoS ONE, 2020, 15, e0241147.	1.1	6
26	Title is missing!. , 2020, 15, e0241147.		0
27	Title is missing!. , 2020, 15, e0241147.		0
28	Title is missing!. , 2020, 15, e0241147.		0
29	Title is missing!. , 2020, 15, e0241147.		Ο
30	Title is missing!. , 2020, 15, e0241147.		0
31	Title is missing!. , 2020, 15, e0241147.		Ο
32	Title is missing!. , 2020, 15, e0241147.		0
33	Title is missing!. , 2020, 15, e0241147.		Ο
34	Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle. Journal of Dairy Science, 2019, 102, 9409-9421.	1.4	46
35	A template framework for environmental timeseries data acquisition. Environmental Modelling and Software, 2019, 117, 237-249.	1.9	7
36	Towards globally customizable ecosystem service models. Science of the Total Environment, 2019, 650, 2325-2336.	3.9	91

#	Article	IF	CITATIONS
37	A review of Agent Based Modeling for agricultural policy evaluation. Agricultural Systems, 2018, 164, 95-106.	3.2	90
38	Machine learning for ecosystem services. Ecosystem Services, 2018, 33, 165-174.	2.3	103
39	Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land. Ecosystem Services, 2018, 33, 29-39.	2.3	23
40	Environmental Data Science. Environmental Modelling and Software, 2018, 106, 4-12.	1.9	71
41	A Sensor Observation Service Extension for Internet of Things. Lecture Notes in Computer Science, 2017, , 56-71.	1.0	1
42	webXTREME : R -based web tool for calculating agroclimatic indices of extreme events. Computers and Electronics in Agriculture, 2017, 136, 111-116.	3.7	10
43	Domain-Driven Design of Big Data Systems Based on a Reference Architecture. , 2017, , 49-68.		11
44	Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems, 2017, 155, 200-212.	3.2	143
45	Managing Variant Calling Files the Big Data Way. , 2017, , .		4
46	A Miniature Data Repository on a Raspberry Pi. Electronics (Switzerland), 2017, 6, 1.	1.8	50
47	Spatial classification with fuzzy lattice reasoning. , 2017, , .		0
48	A Privacy-by-Design Contextual Suggestion System for Tourism. Journal of Sensor and Actuator Networks, 2016, 5, 10.	2.3	8
49	Top 10 reviewers for environmental modelling and software in 2015. Environmental Modelling and Software, 2016, 83, iii.	1.9	0
50	Feature Driven Survey of Big Data Systems. , 2016, , .		3
51	Pythia: A Privacy-Enhanced Personalized Contextual Suggestion System for Tourism. , 2015, , .		13
52	Agricultural production systems modelling and software: Current status and future prospects. Environmental Modelling and Software, 2015, 72, 276-286.	1.9	165
53	Data Interoperability Tools for Regional Integrated Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 147-171.	0.4	1
54	Impacts of Climate Variability and Change on Agricultural Systems in East Africa. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 75-124.	0.4	6

IOANNIS N ATHANASIADIS

#	Article	IF	CITATIONS
55	Interoperable Multimedia Annotation andÂRetrieval for the Tourism Sector. Communications in Computer and Information Science, 2015, , 65-76.	0.4	Ο
56	Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 2014, 62, 495-508.	1.9	45
57	Privacy-preserving computation of participatory noise maps in the cloud. Journal of Systems and Software, 2014, 92, 170-183.	3.3	34
58	The misconception of ecosystem disservices: How a catchy term may yield the wrong messages for science and society. Ecosystem Services, 2014, 10, 52-53.	2.3	33
59	A roadmap to domain specific programming languages for environmental modeling. , 2013, , .		3
60	Identifying Smart Solutions for Fighting Illegal Logging and Timber Trade. IFIP Advances in Information and Communication Technology, 2013, , 143-153.	0.5	1
61	Publishing agro-environmental resources as linked data. International Journal of Metadata, Semantics and Ontologies, 2012, 7, 25.	0.2	1
62	A Privacy-Preserving Cloud Computing System for Creating Participatory Noise Maps. , 2012, , .		19
63	Enriching environmental software model interfaces through ontology-based tools. International Journal of Applied Systemic Studies, 2011, 4, 94.	0.0	10
64	Linking models for assessing agricultural land use change. Computers and Electronics in Agriculture, 2011, 76, 148-160.	3.7	40
65	Information Technologies in Environmental Engineering. Environmental Science and Engineering, 2011,	0.1	4
66	Towards a Semantically Unified Environmental Information Space. IFIP Advances in Information and Communication Technology, 2011, , 407-418.	0.5	5
67	Introducing a Content Integration Process for a Federation of Agricultural Institutional Repositories. Communications in Computer and Information Science, 2011, , 467-477.	0.4	3
68	Publishing and Linking Semantically Annotated Agro-environmental Resources to LOD with AGROPub. Communications in Computer and Information Science, 2011, , 478-488.	0.4	4
69	Data Mining Methods for Quality Assurance in an Environmental Monitoring Network. Lecture Notes in Computer Science, 2010, , 451-456.	1.0	0
70	A Component-Based Framework for Simulating Agricultural Production and Externalities. , 2010, , 63-108.		23
71	Information Enrichment Using TaToo's Semantic Framework. Communications in Computer and Information Science, 2010, , 149-159.	0.4	2
72	A Generic Farming System Simulator. , 2010, , 109-132.		9

#	Article	IF	CITATIONS
73	A Web-Based Software System for Model Integration in Impact Assessments of Agricultural and Environmental Policies. , 2010, , 207-234.		4
74	A database for integrated assessment of European agricultural systems. Environmental Science and Policy, 2009, 12, 573-587.	2.4	63
75	Defining assessment projects and scenarios for policy support: Use of ontology in Integrated Assessment and Modelling. Environmental Modelling and Software, 2009, 24, 1491-1500.	1.9	40
76	Modelling with knowledge: A review of emerging semantic approaches to environmental modelling. Environmental Modelling and Software, 2009, 24, 577-587.	1.9	109
77	A multi-agent system for meteorological radar data management and decision support. Environmental Modelling and Software, 2009, 24, 1264-1273.	1.9	23
78	Ontology for Seamless Integration of Agricultural Data and Models. Communications in Computer and Information Science, 2009, , 282-293.	0.4	22
79	A Methodology for Developing Environmental Information Systems with Software Agents. , 2009, , 119-137.		4
80	Semantic links in integrated modelling frameworks. Mathematics and Computers in Simulation, 2008, 78, 412-423.	2.4	46
81	Chapter Twelve Data Mining for Environmental Systems. Developments in Integrated Environmental Assessment, 2008, , 205-228.	0.0	13
82	Chapter Seven Integrated Modelling Frameworks for Environmental Assessment and Decision Support. Developments in Integrated Environmental Assessment, 2008, , 101-118.	0.0	9
83	Indirectly driven knowledge modelling in ecology. International Journal of Metadata, Semantics and Ontologies, 2008, 3, 210.	0.2	7
84	Towards a Virtual Enterprise Architecture for the Environmental Sector. , 2008, , 256-266.		6
85	Towards a Virtual Enterprise Architecture for the Environmental Sector. , 2008, , 368-378.		0
86	Training Intelligent Agents in the Semantic Web Era: The Golf Advisor Agent. , 2007, , .		2
87	Application of Data Mining and Intelligent Agent Technologies to Concurrent Engineering. International Journal of Product Lifecycle Management, 2007, 2, 173.	0.1	2
88	Ontologies, JavaBeans and Relational Databases for enabling semantic programming. Proceedings - IEEE Computer Society's International Computer Software and Applications Conference, 2007, , .	0.0	9
89	Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. International Journal of Approximate Reasoning, 2007, 45, 152-188.	1.9	108
90	A retraining methodology for enhancing agent intelligence. Knowledge-Based Systems, 2007, 20, 388-396.	4.0	14

IOANNIS N ATHANASIADIS

#	ARTICLE	IF	CITATIONS
91	Data mining for agent reasoning: A synergy for training intelligent agents. Engineering Applications of Artificial Intelligence, 2007, 20, 1097-1111.	4.3	35
92	The Fuzzy Lattice Reasoning (FLR) Classifier for Mining Environmental Data. , 2007, , 175-193.		6
93	Knowledge Discovery for Operational Decision Support in Air Quality Management. Journal of Environmental Informatics, 2007, 9, 100-107.	6.0	19
94	Semantic Modeling in Farming Systems Research - The Case of the Agricultural Management Definition Module. Environmental Science and Engineering, 2007, , 417-432.	0.1	1
95	Training Intelligent Agents in the Semantic Web Era: The Golf Advisor Agent. , 2007, , .		0
96	An intelligent service layer upgrades environmental information management. IT Professional, 2006, 8, 34-39.	1.4	8
97	Air Quality Assessment Using Fuzzy Lattice Reasoning (FLR). , 2006, , .		10
98	Social influence and water conservation: an agent-based approach. Computing in Science and Engineering, 2005, 7, 65-70.	1.2	15
99	A Hybrid Agent-Based Model for Estimating Residential Water Demand. Simulation, 2005, 81, 175-187.	1.1	106
100	An agentâ€based intelligent environmental monitoring system. Management of Environmental Quality, 2004, 15, 238-249.	2.2	60
101	A Framework for Constructing Multi-agent Applications and Training Intelligent Agents. Lecture Notes in Computer Science, 2004, , 96-109.	1.0	13
102	A retraining methodology for enhancing agent intelligence. , 0, , .		1
103	Semantics for interoperability of distributed data and models: Foundations for better-connected information. F1000Research, 0, 6, 686.	0.8	19
104	Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modeling, 0, 2, 16226.	0.0	82
105	Editorial: The inaugural issue of Socio-Environmental Systems Modelling (SESMO). Socio-Environmental Systems Modeling, 0, 1, 16399.	0.0	0
106	Towards a Virtual Enterprise Architecture for the Environmental Sector. , 0, , .		1
107	Towards a Virtual Enterprise Architecture for the Environmental Sector. , 0, , 125-136.		0