
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8504027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	6.0	5,936
2	Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.	5.8	2,214
3	Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014, 136, 622-625.	6.6	2,091
4	Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81.	15.6	1,890
5	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	4.5	1,343
6	Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014, 8, 1674-1680.	7.3	1,320
7	Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials, 2009, 21, 1434-1449.	11.1	1,211
8	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
9	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029
10	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
11	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	1.5	667
12	Interface investigation and engineering – achieving high performance polymer photovoltaic devices. Journal of Materials Chemistry, 2010, 20, 2575.	6.7	542
13	Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Scientific Reports, 2013, 3, 3356.	1.6	542
14	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534
15	Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 15540-15547.	6.6	490
16	10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub ells. Advanced Materials, 2013, 25, 3973-3978.	11.1	419
17	Plasmonic Polymer Tandem Solar Cell. ACS Nano, 2011, 5, 6210-6217.	7.3	326
18	Highly Efficient Tandem Polymer Photovoltaic Cells. Advanced Materials, 2010, 22, 380-383.	11.1	320

#	Article	IF	CITATIONS
19	Perovskite Solar Cells Employing Dopantâ€Free Organic Hole Transport Materials with Tunable Energy Levels. Advanced Materials, 2016, 28, 440-446.	11.1	249
20	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
21	Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials, 2009, 21, 4238-4242.	11.1	242
22	A Robust Interâ€Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells. Advanced Materials, 2011, 23, 3465-3470.	11.1	224
23	A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.	5.2	213
24	Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 14517-14534.	5.2	201
25	Tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy and Environmental Science, 2011, 4, 1606.	15.6	190
26	Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes with High Efficiency and Low Driving Voltage. Advanced Materials, 2017, 29, 1603826.	11.1	179
27	A Metalâ€Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture. Advanced Materials, 2011, 23, 1282-1286.	11.1	165
28	A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices. Chemical Communications, 2003, , 1664-1665.	2.2	152
29	Coâ€Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency. Advanced Materials, 2012, 24, 2768-2773.	11.1	149
30	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
31	Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells. Nano Letters, 2015, 15, 662-668.	4.5	145
32	Effect of Carbon Chain Length in the Substituent of PCBMâ€like Molecules on Their Photovoltaic Properties. Advanced Functional Materials, 2010, 20, 1480-1487.	7.8	137
33	Toward Highly Sensitive Polymer Photodetectors by Molecular Engineering. Advanced Materials, 2015, 27, 6496-6503.	11.1	136
34	High‣fficiency Polymer Tandem Solar Cells with Threeâ€Terminal Structure. Advanced Materials, 2010, 22, E77-80.	11.1	123
35	High efficiency polymer solar cells with vertically modulated nanoscale morphology. Nanotechnology, 2009, 20, 165202.	1.3	122
36	A Series of Squaraine Dyes: Effects of Side Chain and the Number of Hydroxyl Groups on Material Properties and Photovoltaic Performance. Chemistry of Materials, 2014, 26, 1356-1364.	3.2	119

#	Article	IF	CITATIONS
37	Synthesis, crystal structure and electroluminescent properties of a Schiff base zinc complex. Inorganica Chimica Acta, 2006, 359, 2246-2251.	1.2	100
38	Low-Temperature TiO _{<i>x</i>} Compact Layer for Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11076-11083.	4.0	100
39	Multi-Source/Component Spray Coating for Polymer Solar Cells. ACS Nano, 2010, 4, 4744-4752.	7.3	99
40	Solutionâ€Processed Small Molecules Using Different Electron Linkers for Highâ€Performance Solar Cells. Advanced Materials, 2013, 25, 4657-4662.	11,1	96
41	J-aggregation of a squaraine dye and its application in organic photovoltaic cells. Journal of Materials Chemistry C, 2013, 1, 6547.	2.7	91
42	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
43	A New Family of Isophorone-Based Dopants for Red Organic Electroluminescent Devices. Chemistry of Materials, 2003, 15, 1486-1490.	3.2	88
44	Anthracene derivative for a non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency. Chemical Physics Letters, 2004, 397, 1-4.	1.2	78
45	Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. Nano Letters, 2017, 17, 5140-5147.	4.5	78
46	The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Solar Energy Materials and Solar Cells, 2014, 130, 20-26.	3.0	75
47	Synthesis, photoluminescence and electroluminescence of new 1H-pyrazolo[3,4-b]quinoxaline derivatives. Journal of Materials Chemistry, 2003, 13, 1894.	6.7	70
48	Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14, 14661.	1.3	69
49	Infrared and visible emission from organic electroluminescent devices based on praseodymium complex. Applied Physics Letters, 2001, 79, 1942-1944.	1.5	61
50	High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors. Solar Energy Materials and Solar Cells, 2012, 98, 472-475.	3.0	57
51	Highly efficient organic p–i–n photovoltaic cells based on tetraphenyldibenzoperiflanthene and fullerene C ₇₀ . Energy and Environmental Science, 2013, 6, 249-255.	15.6	57
52	Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes. Synthetic Metals, 1999, 104, 165-168.	2.1	56
53	White light emitting organic electroluminescent devices using lanthanide dinuclear complexes. Journal of Luminescence, 1999, 82, 105-109.	1.5	55
54	Europium complexes as emitters in organic electroluminescent devices. Synthetic Metals, 1997, 91, 267-269.	2.1	51

#	Article	IF	CITATIONS
55	A triphenylamine derivative as an efficient organic light color-conversion material for white LEDs. Journal of Luminescence, 2008, 128, 67-73.	1.5	51
56	Optical and electrical properties of a squaraine dye in photovoltaic cells. Applied Physics Letters, 2012, 101, 083904.	1.5	51
57	Energy transfer process from polymer to rare earth complexes. Synthetic Metals, 1997, 91, 151-154.	2.1	49
58	A schiff base zinc complex and its electroluminescent properties. Thin Solid Films, 2007, 515, 4080-4084.	0.8	48
59	Enhanced electroluminescence of europium(III) complex by terbium(III) substitution in organic light emitting diodes. Thin Solid Films, 2000, 363, 208-210.	0.8	45
60	10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature Communications, 2015, 6, 6391.	5.8	45
61	Natural Photosynthetic Carotenoids for Solution-Processed Organic Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2013, 117, 804-811.	1.5	40
62	Organic electroluminescent devices using terbium chelates as the emitting layers. Synthetic Metals, 1997, 91, 263-265.	2.1	38
63	Triphenylamine-functionalized rhenium (I) complex as a highly efficient yellow-green emitter in electrophosphorescent devices. Applied Physics Letters, 2006, 89, 243511.	1.5	38
64	The Critical Role of Processing and Morphology in Determining Degradation Rates in Polymer Solar Cells. Advanced Energy Materials, 2011, 1, 124-131.	10.2	35
65	White light emission from OEL devices based on organic dysprosium-complex. Synthetic Metals, 2000, 111-112, 43-45.	2.1	34
66	Observation of red intraligand electrophosphorescence from a stilbene-containing Re(I) complex. Applied Physics Letters, 2004, 85, 4786-4788.	1.5	33
67	Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances, 2014, 4, 42804-42807.	1.7	31
68	Fullerene derivatives as electron donor for organic photovoltaic cells. Applied Physics Letters, 2013, 103, 203301.	1.5	27
69	The effect of processing solvent dependent film aggregation on the photovoltaic performance of squaraine:PC71BM bulk heterojunction solar cells. Organic Electronics, 2017, 51, 62-69.	1.4	26
70	Electroluminescence from Singlet Excited-State of the Exciplex between (2,3-Dicarbonitrilopyrazino[2,3-f][1,10]phenanthroline)Re(CO) ₃ Cl and CBP. Journal of Physical Chemistry C, 2008, 112, 3920-3925.	1.5	25
71	Improved performance of electrophosphorescent devices based on Re(CO)3Clâ€dipyrido[3,2â€a:2′,3′]phenazine. Applied Physics Letters, 2006, 88, 093507.	1.5	24
72	A terbium (III) complex with triphenylamine-functionalized ligand for organic electroluminescent device. Journal of Luminescence, 2008, 128, 620-624.	1.5	23

#	Article	IF	CITATIONS
73	Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24, 484007.	1.3	23
74	A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192, 10-14.	2.1	22
75	Dicyano-functionalized chlorophyll derivatives with ambipolar characteristic for organic photovoltaics. Organic Electronics, 2013, 14, 1972-1979.	1.4	21
76	High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Applied Physics Letters, 2015, 106, 053305.	1.5	21
77	Development of Solar Cells Based on Synthetic Near-Infrared Absorbing Purpurins 2: Use of Fullerene and Its Derivative As Electron Acceptors for Favorable Charge Separation. Journal of Physical Chemistry C, 2012, 116, 21244-21254.	1.5	18
78	Fullerene C70 as a p-type donor in organic photovoltaic cells. Applied Physics Letters, 2014, 105, 093301.	1.5	16
79	Electron-transport properties of rare earth chelates in organic electroluminescent devices. Synthetic Metals, 1997, 91, 271-273.	2.1	14
80	Solution-Processed Organic Photovoltaics Based on Indoline Dye Molecules Developed in Dye-Sensitized Solar Cells. Molecules, 2013, 18, 3107-3117.	1.7	14
81	Organic Light-Emitting Diode Using Eu3+ Polymer Complex as an Emitter. Japanese Journal of Applied Physics, 1999, 38, L46-L48.	0.8	13
82	Comparison of the Solution and Vacuum-Processed Squaraine:Fullerene Small-Molecule Bulk Heterojunction Solar Cells. Frontiers in Chemistry, 2018, 6, 412.	1.8	11
83	Highly efficient electrophosphorescence devices based on iridium complexes with high efficiency over a wide range of current densities. Journal Physics D: Applied Physics, 2008, 41, 245101.	1.3	10
84	A morphology control layer of a pyrene dimer enhances the efficiency in small molecule organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 501-509.	2.7	10
85	Rhenium(I) complex as an electron acceptor in a photovoltaic device. Journal of Alloys and Compounds, 2007, 432, L15-L17.	2.8	9
86	Tandem Solar Cell—Concept and Practice in Organic Solar Cells. Topics in Applied Physics, 2015, , 315-346.	0.4	8
87	Soluble dendrimers europium(III) β-diketonate complex for organic memory devices. Thin Solid Films, 2008, 516, 3123-3127.	0.8	6
88	Redistribution of carriers in OEL devices by inserting a thin charge-carrier blocking layer. Synthetic Metals, 1997, 91, 275-277.	2.1	5
89	Preparation, photo- and electro-luminescent properties of a novel complex of Tb (III) with a tripod ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 654-658.	2.0	3
90	Indoline-based donor molecule for efficient co-evaporated organic photovoltaics. Organic Electronics, 2013, 14, 2210-2215.	1.4	2

#	Article	IF	CITATIONS
91	Inverted Planar Structure of Perovskite Solar Cells. , 2016, , 307-324.		2