Xing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8503904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. Journal of Materials Chemistry A, 2013, 1, 9189.	10.3	145
2	Iron Oxide with Different Crystal Phases (α- and γ-Fe ₂ O ₃) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS. Analytical Chemistry, 2016, 88, 906-914.	6.5	123
3	Adsorbent Assisted <i>in Situ</i> Electrocatalysis: An Ultra-Sensitive Detection of As(III) in Water at Fe ₃ O ₄ Nanosphere Densely Decorated with Au Nanoparticles. Analytical Chemistry, 2016, 88, 1154-1161.	6.5	90
4	C-doped and N-doped reduced graphene oxide/TiO2 composites with exposed (0 0 1) and (1 0 1) facets controllably synthesized by a hydrothermal route and their gas sensing characteristics. Sensors and Actuators B: Chemical, 2016, 230, 761-772.	7.8	57
5	Ultrasonic washing for oily sludge treatment in pilot scale. Ultrasonics, 2018, 90, 1-4.	3.9	54
6	Facet-Dependent Stripping Behavior of Cu ₂ O Microcrystals Toward Lead Ions: A Rational Design for the Determination of Lead Ions. Small, 2015, 11, 2493-2498.	10.0	47
7	Assembling reduced graphene oxide with sulfur/nitrogen- "hooks―for electrochemical determination of Hg(II). Analytica Chimica Acta, 2020, 1100, 31-39.	5.4	38
8	Insights into the photocatalytic peroxymonosulfate activation over defective boron-doped carbon nitride for efficient pollutants degradation. Journal of Hazardous Materials, 2021, 418, 126338.	12.4	37
9	Size-Controlled TiO 2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p -Phenylenediamine for efficient photocatalytic degradation of fulvic acids. Journal of Hazardous Materials, 2016, 314, 41-50.	12.4	35
10	Robust electrochemical analysis of As(III) integrating with interference tests: A case study in groundwater. Journal of Hazardous Materials, 2014, 278, 66-74.	12.4	33
11	Role of Fe(III) in preventing humic interference during As(III) detection on gold electrode: Spectroscopic and voltammetric evidence. Journal of Hazardous Materials, 2014, 267, 153-160.	12.4	31
12	Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2,4,6-trinitrotoluene. Talanta, 2020, 208, 120410.	5.5	26
13	Degradation of Tetracycline Hydrochloride by Cu-Doped MIL-101(Fe) Loaded Diatomite Heterogeneous Fenton Catalyst. Nanomaterials, 2022, 12, 811.	4.1	21
14	Hydrothermal synthesis of well-standing δ-MnO2 nanoplatelets on nitrogen-doped reduced graphene oxide for high-performance supercapacitor. Journal of Alloys and Compounds, 2019, 787, 309-317.	5.5	19
15	Magnetic recyclable heterogeneous catalyst Fe ₃ O ₄ /g-C ₃ N ₄ for tetracycline hydrochloride degradation via photo-Fenton process under visible light. Environmental Technology (United) Tj ETQq1 1 0.7843	814 ^{2;2} BT /(19 Dverlock 10
16	The metal-organic framework supported gold nanoparticles as a highlyÂsensitive platform for electrochemical detection of methyl mercury species in the aqueous environment. Journal of Hazardous Materials, 2022, 431, 128608.	12.4	17
17	Roles of alkali metal dopants and surface defects on polymeric carbon nitride in photocatalytic peroxymonosulfate activation towards water decontamination. Journal of Hazardous Materials, 2022, 424, 127292.	12.4	13
18	Construction of Li/K dopants and cyano defects in graphitic carbon nitride for highly efficient peroxymonosulfate activation towards organic contaminants degradation. Chemosphere, 2022, 294, 133700.	8.2	13

XING CHEN

#	Article	IF	CITATIONS
19	SBA-15 Templated Mesoporous Graphitic C ₃ N ₄ for Remarkably Enhanced Photocatalytic Degradation of Organic Pollutants under Visible Light. Nano, 2019, 14, 1950136.	1.0	8
20	Ce3+ triggers fenton-like processes in neutral solutions for effective catechol degradation. Environmental Engineering Research, 2022, 27, 200519-0.	2.5	8
21	Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water (Switzerland), 2022, 14, 629.	2.7	5
22	Heavy Metal Detection: Facet-Dependent Stripping Behavior of Cu ₂ O Microcrystals Toward Lead Ions: A Rational Design for the Determination of Lead Ions (Small 21/2015). Small, 2015, 11, 2584-2584.	10.0	1
23	Organic Pollutants: A Versatile Environmental Impedimetric Sensor for Ultrasensitive Determination of Persistent Organic Pollutants (POPs) and Highly Toxic Inorganic Ions (Adv. Sci. 5/2015). Advanced Science, 2015, 2, .	11.2	0
24	α-MnO2 Nanowires and Amino-Modified Reduced Graphene Oxide Hybrid Films for Constructing the Flexible High-Performance Symmetrical Supercapacitors. Nano, 2021, 16, 2150080.	1.0	0