Xiaofeng Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8503223/publications.pdf Version: 2024-02-01

XIAOFENC CUI

#	Article	IF	CITATIONS
1	Application of inkjet printing to tissue engineering. Biotechnology Journal, 2006, 1, 910-917.	1.8	695
2	Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30, 6221-6227.	5.7	612
3	Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology. Tissue Engineering - Part A, 2012, 18, 1304-1312.	1.6	575
4	Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine. Recent Patents on Drug Delivery and Formulation, 2012, 6, 149-155.	2.1	459
5	Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006, 27, 3580-8.	5.7	410
6	Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnology and Bioengineering, 2010, 106, 963-969.	1.7	307
7	Bioactive nanoparticles stimulate bone tissue formation in bioprinted threeâ€dimensional scaffold and human mesenchymal stem cells. Biotechnology Journal, 2014, 9, 1304-1311.	1.8	282
8	Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 2015, 37, 2349-2355.	1.1	278
9	Inkjetâ€bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnology Journal, 2015, 10, 1568-1577.	1.8	277
10	Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnology Letters, 2016, 38, 203-211.	1.1	180
11	3D bioprinting and the current applications in tissue engineering. Biotechnology Journal, 2017, 12, 1600734.	1.8	160
12	Synergistic action of fibroblast growth factorâ€2 and transforming growth factorâ€beta1 enhances bioprinted human neocartilage formation. Biotechnology and Bioengineering, 2012, 109, 2357-2368.	1.7	107
13	Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnology Letters, 2013, 35, 315-321.	1.1	91
14	Organ Bioprinting: Are We There Yet?. Advanced Healthcare Materials, 2018, 7, 1701018.	3.9	63
15	Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomaterialia, 2017, 59, 317-326.	4.1	57
16	Structured threeâ€dimensional coâ€culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnology and Bioengineering, 2012, 109, 2369-2380.	1.7	55
17	Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology. Journal of Visualized Experiments, 2014, , .	0.2	54
18	Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. Journal of Controlled Release, 2008, 131, 128-136.	4.8	51

XIAOFENG CUI

#	Article	IF	CITATIONS
19	Venous Endothelial Marker COUP-TFII Regulates the Distinct Pathologic Potentials of Adult Arteries and Veins. Scientific Reports, 2015, 5, 16193.	1.6	43
20	Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel. Methods in Molecular Biology, 2017, 1612, 391-398.	0.4	43
21	Connexin 43: Key roles in the skin. Biomedical Reports, 2017, 6, 605-611.	0.9	40
22	Tumor Suppressor PTPRJ Is a Target of miRâ€155 in Colorectal Cancer. Journal of Cellular Biochemistry, 2017, 118, 3391-3400.	1.2	32
23	NR2F2 regulates chondrogenesis of human mesenchymal stem cells in bioprinted cartilage. Biotechnology and Bioengineering, 2017, 114, 208-216.	1.7	32
24	Synthesis of a 2D phosphorus material in a MOF-based 2D nano-reactor. Chemical Science, 2018, 9, 5912-5918.	3.7	14
25	Collagen Matrix Alignment Using Inkjet Printer Technology. Materials Research Society Symposia Proceedings, 2008, 1094, 1.	0.1	12
26	Current Progress in Bioprinting. Advanced Structured Materials, 2017, , 227-259.	0.3	6
27	MicroRNA-191 regulates differentiation and migration of mesenchymal stem cells and their paracrine effect on angiogenesis. Biotechnology Letters, 2020, 42, 1777-1788.	1.1	6
28	Establishment of Novel Reporter Cells Stably Maintaining Transcription Factor-driven Human Secreted Alkaline Phosphatase Expression. Current Pharmaceutical Biotechnology, 2018, 19, 224-231.	0.9	5
29	Establishment of Novel High-Standard Chemiluminescent Assay for NTPase in Two Protozoans and Its High-Throughput Screening. Marine Drugs, 2020, 18, 161.	2.2	2
30	Novel Reporter System Monitoring IL-18 Specific Signaling Can Be Applied to High-Throughput Screening. Marine Drugs, 2020, 18, 60.	2.2	2
31	Establishment of Novel Protein Interaction Assays between Sin3 and REST Using Surface Plasmon Resonance and Time-Resolved Fluorescence Energy Transfer. International Journal of Molecular Sciences, 2021, 22, 2323.	1.8	2
32	Three-Dimensional Bioprinting in Regenerative Medicine. Pancreatic Islet Biology, 2015, , 109-122.	0.1	1
33	Establishment of Novel Cells Stably Secreting Various Human IL-18 Recombinant Proteins. Current Pharmaceutical Biotechnology, 2019, 20, 47-55.	0.9	1
34	Novel Reporter System Monitoring IL-18 Specific Signaling can be Applied to High-Throughput Screening. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-LBS-10.	0.0	0