Cesare M N Terracciano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8503069/publications.pdf Version: 2024-02-01

		94433	114465
113	4,572	37	63
papers	citations	h-index	g-index
110	110	110	6404
113	113	113	6404
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Remodelling of adult cardiac tissue subjected to physiological and pathological mechanical load <i>in vitro</i> . Cardiovascular Research, 2022, 118, 814-827.	3.8	24
2	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
3	Mechanosensitive molecular mechanisms of myocardial fibrosis in living myocardial slices. ESC Heart Failure, 2022, 9, 1400-1412.	3.1	15
4	Extracellular Vesicles from Human Cardiac Fibroblasts Modulate Calcium Cycling in Human Stem Cell-Derived Cardiomyocytes. Cells, 2022, 11, 1171.	4.1	3
5	Polysaccharideâ€Polyplex Nanofilm Coatings Enhance Nanoneedleâ€Based Gene Delivery and Transfection Efficiency. Small, 2022, 18, .	10.0	6
6	Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovascular Research, 2021, 117, 149-161.	3.8	34
7	Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication, 2021, 13, 025004.	7.1	12
8	Vascularisation of pluripotent stem cell–derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Archiv European Journal of Physiology, 2021, 473, 1117-1136.	2.8	7
9	CaMKII inhibition reduces arrhythmogenic Ca2+ events in subendocardial cryoinjured rat living myocardial slices. Journal of General Physiology, 2021, 153, .	1.9	5
10	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.	8.0	27
11	In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight, 2021, 6, .	5.0	23
12	Myocardial slices come to age: an intermediate complexity in vitro cardiac model for translational research. Cardiovascular Research, 2020, 116, 1275-1287.	3.8	34
13	Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues. Advanced Materials, 2020, 32, e1904598.	21.0	70
14	Highly purified extracellular vesicles from human cardiomyocytes demonstrate preferential uptake by human endothelial cells. Nanoscale, 2020, 12, 19844-19854.	5.6	16
15	The use of living myocardial slices as a novel disease model to study cardiac arrhythmogenicity in vitro. Journal of Molecular and Cellular Cardiology, 2020, 140, 49-50.	1.9	0
16	Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies. International Journal of Molecular Sciences, 2020, 21, 4727.	4.1	17
17	Vascularized Myocardium-On-A-Chip: Excitation-Contraction Coupling in Perfused Cardiac Co-Cultures. Biophysical Journal, 2020, 118, 410a.	0.5	0
18	Heart Plasticity in Response to Pressure- and Volume-Overload: A Review of Findings in Compensated and Decompensated Phenotypes. Frontiers in Physiology, 2020, 11, 92.	2.8	43

Cesare M N Terracciano

#	Article	IF	CITATIONS
19	Intact myocardial preparations reveal intrinsic transmural heterogeneity in cardiac mechanics. Journal of Molecular and Cellular Cardiology, 2020, 141, 11-16.	1.9	18
20	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	4.5	60
21	Myocardial Slices: an Intermediate Complexity Platform for Translational Cardiovascular Research. Cardiovascular Drugs and Therapy, 2019, 33, 239-244.	2.6	25
22	Microstructured hybrid scaffolds for aligning neonatal rat ventricular myocytes. Materials Science and Engineering C, 2019, 103, 109783.	7.3	2
23	Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro. Nature Communications, 2019, 10, 2168.	12.8	68
24	Myocardial Slices - A Novel Platform for In Vitro Biomechanical Studies. Biophysical Journal, 2019, 116, 30a.	0.5	3
25	Cardiac Excitation-Contraction Coupling. Learning Materials in Biosciences, 2019, , 61-75.	0.4	0
26	Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Advanced Functional Materials, 2018, 28, 1800618.	14.9	167
27	A flexible polyaniline-based bioelectronic patch. Biomaterials Science, 2018, 6, 493-500.	5.4	23
28	Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e495-e512.	2.7	50
29	Investigation of cardiac fibroblasts using myocardial slices. Cardiovascular Research, 2018, 114, 77-89.	3.8	52
30	Heterocellularity and Cellular Cross-Talk in the Cardiovascular System. Frontiers in Cardiovascular Medicine, 2018, 5, 143.	2.4	48
31	Partial Mechanical Unloading of the Heart Disrupts L-Type Calcium Channel and Beta-Adrenoceptor Signaling Microdomains. Frontiers in Physiology, 2018, 9, 1302.	2.8	11
32	Many Cells Make Life Work—Multicellularity in Stem Cell-Based Cardiac Disease Modelling. International Journal of Molecular Sciences, 2018, 19, 3361.	4.1	5
33	Concurrent micro- to macro-cardiac electrophysiology in myocyte cultures and human heart slices. Scientific Reports, 2018, 8, 6947.	3.3	20
34	Empagliflozin reduces <scp>Ca</scp> /calmodulinâ€dependent kinase <scp>II</scp> activity in isolated ventricular cardiomyocytes. ESC Heart Failure, 2018, 5, 642-648.	3.1	131
35	Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5604-5612.	5.8	40
36	Human Cardiac Fibroblasts Engage the Sarcoplasmic Reticulum in Induced Pluripotent Stem Cell-Derived Cardiomyocyte Excitation–Contraction Coupling. Journal of the American College of Cardiology, 2018, 72, 1061-1063.	2.8	11

CESARE M N TERRACCIANO

#	Article	IF	CITATIONS
37	Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 2017, 35, 1881-1897.	3.2	51
38	Free-of-Acrylamide SDS-based Tissue Clearing (FASTClear) for three dimensional visualization of myocardial tissue. Scientific Reports, 2017, 7, 5188.	3.3	38
39	Preparation of viable adult ventricular myocardial slices from large and small mammals. Nature Protocols, 2017, 12, 2623-2639.	12.0	75
40	Regulation of cardiac excitation-contraction coupling by fibroblasts in health and disease. Journal of Molecular and Cellular Cardiology, 2017, 112, 161.	1.9	0
41	Effects of Ar and O ₂ Plasma Etching on Parylene C: Topography versus Surface Chemistry and the Impact on Cell Viability. Plasma Processes and Polymers, 2016, 13, 324-333.	3.0	29
42	A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2016, 2, e1601007.	10.3	173
43	Surface Chemistry and Microtopography of Parylene C Films Control the Morphology and Microtubule Density of Cardiac Myocytes. Tissue Engineering - Part C: Methods, 2016, 22, 464-472.	2.1	10
44	The Fallacy of Assigning Chamber Specificity to iPSC Cardiac Myocytes from Action Potential Morphology. Biophysical Journal, 2016, 110, 281-283.	0.5	23
45	Cardiac t-tubules: where structural plasticity meets functional adaptation. Cardiovascular Research, 2016, 112, 423-425.	3.8	6
46	Manipulation of sarcoplasmic reticulum Ca ²⁺ release in heart failure through mechanical intervention. Journal of Physiology, 2015, 593, 3253-3259.	2.9	10
47	Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials. Scientific Reports, 2015, 5, 11067.	3.3	20
48	Excitation–contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Frontiers in Cell and Developmental Biology, 2015, 3, 59.	3.7	62
49	Induced pluripotent stem cell-derived cardiac myocytes to understand and test calcium handling: Pie in the sky?. Journal of Molecular and Cellular Cardiology, 2015, 89, 376-378.	1.9	9
50	Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovascular Research, 2015, 105, 260-270.	3.8	123
51	Action Potential Morphology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Does Not Predict Cardiac Chamber Specificity and Is Dependent on Cell Density. Biophysical Journal, 2015, 108, 1-4.	0.5	85
52	Does Size Matter?. Journal of the American College of Cardiology, 2015, 65, 2154-2156.	2.8	1
53	Impact of Combined Clenbuterol and Metoprolol Therapy on Reverse Remodelling during Mechanical Unloading. PLoS ONE, 2014, 9, e92909.	2.5	17
54	Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes. PLoS ONE, 2014, 9, e105971.	2.5	3

#	Article	IF	CITATIONS
55	Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes. Journal of Biological Chemistry, 2014, 289, 1282-1293.	3.4	32
56	Parylene C-Based Flexible Electronics for pH Monitoring Applications. Sensors, 2014, 14, 11629-11639.	3.8	24
57	Tollâ€like receptor 9 protects nonâ€immune cells from stress by modulating mitochondrial <scp>ATP</scp> synthesis through the inhibition of <scp>SERCA</scp> 2. EMBO Reports, 2014, 15, 438-445.	4.5	66
58	Recovery of the failing heart: emerging approaches and mechanisms in excitation-contraction coupling. F1000prime Reports, 2014, 6, 27.	5.9	0
59	Adenovirus-mediated expression of myogenic differentiation factor 1 (MyoD) in equine and human dermal fibroblasts enables their conversion to caffeine-sensitive myotubes. Neuromuscular Disorders, 2014, 24, 250-258.	0.6	7
60	Tissue Engineering Techniques in Cardiac Repair and Disease Modelling. Current Pharmaceutical Design, 2014, 20, 2048-2056.	1.9	5
61	ORM-10103: a significant advance in sodium-calcium exchanger pharmacology?. British Journal of Pharmacology, 2013, 170, 765-767.	5.4	4
62	Heterotopic abdominal heart transplantation in rats for functional studies of ventricular unloading. Journal of Surgical Research, 2013, 179, e31-e39.	1.6	17
63	The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 2013, 34, 2399-2411.	11.4	154
64	Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovascular Research, 2013, 97, 230-239.	3.8	19
65	Hyperpolarizationâ€Activated Cyclic Nucleotideâ€Gated Channels and Ventricular Arrhythmias in Heart Failure: A Novel Target for Therapy?. Journal of the American Heart Association, 2013, 2, e000287.	3.7	12
66	A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Human Molecular Genetics, 2013, 22, 372-383.	2.9	50
67	The Effect of <scp>SN</scp> â€6, a Novel Sodiumâ€Calcium Exchange Inhibitor, on Contractility and Calcium Handling in Isolated Failing Rat Ventricular Myocytes. Cardiovascular Therapeutics, 2013, 31, e115-24.	2.5	13
68	Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovascular Research, 2013, 98, 225-232.	3.8	39
69	Ablation of SGK1 Impairs Endothelial Cell Migration and Tube Formation Leading to Decreased Neo-Angiogenesis Following Myocardial Infarction. PLoS ONE, 2013, 8, e80268.	2.5	37
70	Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. European Journal of Cardio-thoracic Surgery, 2012, 42, 312-318.	1.4	23
71	Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca ²⁺ â€induced Ca ²⁺ release in a rodent model of heart failure. European Journal of Heart Failure, 2012, 14, 571-580.	7.1	76
72	Cardiomyocyte <scp><scp>Ca</scp></scp> 2+ handling and structure is regulated by degree and duration of mechanical load variation. Journal of Cellular and Molecular Medicine, 2012, 16, 2910-2918.	3.6	34

#	Article	IF	CITATIONS
73	Structured Culture Scaffolds Improve the Calcium Handling Properties of Cardiomyocytes Differentiated from Induced Pluripotent Stem Cells. Biophysical Journal, 2012, 102, 103a.	0.5	2
74	Reduced Na ⁺ and higher K ⁺ channel expression and function contribute to right ventricular origin of arrhythmias in <i>Scn5a+/â^'</i> mice. Open Biology, 2012, 2, 120072.	3.6	32
75	Can Bridge to Recovery Help to Reveal the Secrets of the Failing Heart?. Current Cardiology Reports, 2012, 14, 392-396.	2.9	11
76	Bridge to Recovery: What Remains to be Discovered?. Cardiology Clinics, 2011, 29, 531-547.	2.2	8
77	Human Heart Slices - a Novel Multicellular System Suitable for Electrophysiological and Pharmacological Studies. Biophysical Journal, 2011, 100, 575a.	0.5	0
78	Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. Journal of Molecular and Cellular Cardiology, 2011, 51, 390-398.	1.9	72
79	The Holy Grail of LVAD-induced reversal of severe chronic heart failure: the need for integration. European Heart Journal, 2011, 32, 1052-1054.	2.2	6
80	The structure and function of cardiac t-tubules in health and disease. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2714-2723.	2.6	121
81	Bridge to Recovery and the Search for Decision Nodes. Circulation: Heart Failure, 2011, 4, 393-395.	3.9	8
82	Genetic variation in SCN10A influences cardiac conduction. Nature Genetics, 2010, 42, 149-152.	21.4	248
83	Cell therapy for cardiac repair. British Medical Bulletin, 2010, 94, 65-80.	6.9	19
84	Prolonged mechanical unloading affects cardiomyocyte excitationâ€contraction coupling, transverseâ€ŧubule structure, and the cell surface. FASEB Journal, 2010, 24, 3321-3329.	0.5	73
85	A SHIFT from ion channels to clinical practice. Nature Reviews Cardiology, 2010, 7, 669-670.	13.7	6
86	Genetic background affects function and intracellular calcium regulation of mouse hearts. Cardiovascular Research, 2010, 87, 683-693.	3.8	42
87	Contemporary Use of Ventricular Assist Devices. Annual Review of Medicine, 2010, 61, 255-270.	12.2	43
88	Adult progenitor cell transplantation influences contractile performance and calcium handling of recipient cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H927-H936.	3.2	16
89	Chronic Treatment with Clenbuterol Modulates Endothelial Progenitor Cells and Circulating Factors in a Murine Model of Cardiomyopathy. Journal of Cardiovascular Translational Research, 2009, 2, 182-190.	2.4	7
90	A Gene Expression Profile of the Myocardial Response to Clenbuterol. Journal of Cardiovascular Translational Research, 2009, 2, 191-197.	2.4	13

#	Article	IF	CITATIONS
91	Protein 4.1 and the control of ion channels. Blood Cells, Molecules, and Diseases, 2009, 42, 211-215.	1.4	32
92	Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 2009, 47, 288-295.	1.9	42
93	Prolonged Mechanical Unloading Reduces Myofilament Sensitivity to Calcium and Sarcoplasmic Reticulum Calcium Uptake Leading to Contractile Dysfunction. Journal of Heart and Lung Transplantation, 2008, 27, 882-889.	0.6	35
94	Cytoskeletal Protein 4.1R Affects Repolarization and Regulates Calcium Handling in the Heart. Circulation Research, 2008, 103, 855-863.	4.5	50
95	Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovascular Research, 2008, 79, 472-480.	3.8	114
96	Role and possible mechanisms of clenbuterol in enhancing reverse remodelling during mechanical unloading in murine heart failure. Cardiovascular Research, 2008, 77, 695-706.	3.8	62
97	Left ventricular assist device-induced molecular changes in the failing myocardium. Current Opinion in Cardiology, 2008, 23, 206-218.	1.8	39
98	Choice of Cell-Delivery Route for Skeletal Myoblast Transplantation for Treating Post-Infarction Chronic Heart Failure in Rat. PLoS ONE, 2008, 3, e3071.	2.5	63
99	Direct Intramyocardial But Not Intracoronary Injection of Bone Marrow Cells Induces Ventricular Arrhythmias in a Rat Chronic Ischemic Heart Failure Model. Circulation, 2007, 115, 2254-2261.	1.6	174
100	Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochemical and Biophysical Research Communications, 2007, 357, 889-895.	2.1	134
101	The Role of the Cardiac Na+/Ca2+ Exchanger in Reverse Remodeling: Relevance for LVAD-Recovery. Annals of the New York Academy of Sciences, 2007, 1099, 349-360.	3.8	22
102	Evaluation of frequency, type, and function of gap junctions between skeletal myoblasts overexpressing connexin43 and cardiomyocytes: relevance to cell transplantation. FASEB Journal, 2006, 20, 744-746.	0.5	24
103	Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1468-H1476.	3.2	62
104	Less Na/H-exchanger to treat heart failure: a simple solution for a complex problem?. Cardiovascular Research, 2005, 65, 10-12.	3.8	2
105	The effects of overexpression of the Na+/Ca2+ exchanger on calcium regulation in hypertrophied mouse cardiac myocytes. Cell Calcium, 2004, 36, 111-118.	2.4	14
106	Clinical Recovery From End-Stage Heart Failure Using Left-Ventricular Assist Device and Pharmacological Therapy Correlates With Increased Sarcoplasmic Reticulum Calcium Content but Not With Regression of Cellular Hypertrophy. Circulation, 2004, 109, 2263-2265.	1.6	151
107	Loss of β-adrenoceptor response in myocytes overexpressing the Na+/Ca2+-exchanger. Journal of Molecular and Cellular Cardiology, 2004, 36, 43-48.	1.9	34
108	Changes in sarcolemmal Ca entry and sarcoplasmic reticulum Ca content in ventricular myocytes from patients with end-stage heart failure following myocardial recovery after combined pharmacological and ventricular assist device therapy. European Heart Journal, 2003, 24, 1329-1339.	2.2	69

#	Article	IF	CITATIONS
109	Effects of Na+/Ca2+-exchanger Overexpression on Excitation–contraction Coupling in Adult Rabbit Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 2002, 34, 389-400.	1.9	55
110	Functional Consequences of Na/Ca Exchanger Overexpression in Cardiac Myocytes. Annals of the New York Academy of Sciences, 2002, 976, 520-527.	3.8	10
111	Functional alterations in adult rat myocytes after overexpression of phospholamban with use of adenovirus. Physiological Genomics, 1999, 1, 41-50.	2.3	42
112	Na+â^'Ca2+exchange and sarcoplasmic reticular Ca2+regulation in ventricular myocytes from transgenic mice overexpressing the Na+â^'Ca2+exchanger. Journal of Physiology, 1998, 512, 651-667.	2.9	131
113	Effects of Rest Interval on the Release of Calcium From the Sarcoplasmic Reticulum in Isolated Guinea Pig Ventricular Myocytes. Circulation Research, 1995, 77, 354-360.	4.5	37