Bianca C Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8503063/publications.pdf

Version: 2024-02-01

25 papers

351 citations

1040056 9 h-index 11 g-index

25 all docs 25 docs citations

25 times ranked

254 citing authors

#	Article	IF	CITATIONS
1	Fatigue Life Prediction of Steel Pipelines Based on X-ray Diffraction Analyses. Journal of Materials Engineering and Performance, 2022, 31, 801-813.	2.5	3
2	Ultimate bending strength of sandwich pipes with actual interlayer behavior. Thin-Walled Structures, 2021, 161, 107476.	5.3	10
3	A Damage Criterion to Predict the Fatigue Life of Steel Pipelines Based on Indentation Measurements. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	6
4	Experimentally based parameters applied to concrete damage plasticity model for strain hardening cementitious composite in sandwich pipes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	13
5	Generalized expressions for stress concentration factors of pipeline plain dents under cyclic internal pressure. International Journal of Pressure Vessels and Piping, 2019, 170, 82-91.	2.6	24
6	Fatigue Assessment of Dented Rigid Risers. , 2019, , .		1
7	Pipelines, risers and umbilicals failures: A literature review. Ocean Engineering, 2018, 148, 412-425.	4.3	124
8	High Cycle Fatigue Damage Evaluation of Steel Pipelines Based on Microhardness Changes During Cyclic Loads: Part II. , 2018 , , .		2
9	High Cycle Fatigue Damage Evaluation of Steel Pipelines Based on Microhardness Changes During Cyclic Loads. , 2017, , .		4
10	Toward a Fatigue Life Assessment of Steel Pipes Based on X-Ray Diffraction Measurements. , 2015, , .		3
11	Fatigue life assessment of damaged pipelines under cyclic internal pressure: Pipelines with longitudinal and transverse plain dents. International Journal of Fatigue, 2014, 68, 38-47.	5.7	20
12	X-ray diffraction study of microstructural changes during fatigue damage initiation in pipe steels: Role of the initial dislocation structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 1-12.	5.6	12
13	Stress Concentration Factors of Dented Rigid Risers. , 2013, , .		2
14	Stress Concentration Factors of Damaged FPSO Side Panels Under Cyclic Loads. , 2013, , .		1
15	X-Ray Diffraction Study of Microstructural Changes During Fatigue Damage Initiation in Steel Pipes. , 2012, , .		3
16	X-Ray Diffraction Study of Microstructural Changes During Fatigue Damage in Steel Pipelines. , 2012, , .		0
17	X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 158-166.	5.6	17
18	Assessment of Fatigue Damage Initiation in Oil and Gas Steel Pipes. , 2011, , .		1

#	Article	IF	CITATIONS
19	Stressâ€life fatigue assessment of pipelines with plain dents. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 961-974.	3.4	25
20	Fatigue analysis of damaged steel pipelines under cyclic internal pressure. International Journal of Fatigue, 2009, 31, 962-973.	5.7	63
21	Stress Concentration Factors of Longitudinal and Transverse Plain Dents on Steel Pipelines., 2008,,.		2
22	Fatigue Life Analysis of Steel Pipelines With Plain Dents Under Cyclic Internal Pressure., 2008,,.		0
23	High Cycle Fatigue of Pipelines With Plain Dents: Simulations, Experiments and Assessment. , 2007, , .		4
24	Stress Concentration Factors of Dented Pipelines. , 2006, , 335.		3
25	Comparative Structural Analyses Between Sandwich and Steel Pipelines for Ultra-Deep Water. , 2002, , 165.		8