
FrantiÅjek MÃjliÅj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8502868/publications.pdf Version: 2024-02-01

Ερλητιδιέκ Μδιιιδι

#	Article	IF	CITATIONS
1	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
2	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39
3	Disturbance history drives current compositional and diversity patterns of primary Picea abies (L.) Karst. forest vegetation. Forest Ecology and Management, 2022, 520, 120387.	3.2	6
4	Historical charcoal burning and coppicing suppressed beech and increased forest vegetation heterogeneity. Journal of Vegetation Science, 2021, 32, .	2.2	13
5	Evaluating structural and compositional canopy characteristics to predict the lightâ€demand signature of the forest understorey in mixed, semiâ€natural temperate forests. Applied Vegetation Science, 2021, 24, .	1.9	24
6	Short-Term Dynamics of Vegetation Diversity and Aboveground Biomass of Picea abies (L.) H. Karst. Forests after Heavy Windstorm Disturbance. Forests, 2021, 12, 97.	2.1	4
7	Syntaxonomical revision of the order Fagetalia sylvaticae PawÅ,owski ex PawÅ,owski et al. 1928 in Slovakia. Biologia (Poland), 2021, 76, 1929.	1.5	5
8	ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 2021, 30, 1183-1190.	5.8	23
9	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	4.0	4
10	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	9.5	57
11	The Last Glacial and Holocene history of mountain woodlands in the southern part of the Western Carpathians, with emphasis on the spread ofFagus sylvatica. Palynology, 2020, 44, 709-722.	1.5	3
12	Drivers of aboveâ€ground understorey biomass and nutrient stocks in temperate deciduous forests. Journal of Ecology, 2020, 108, 982-997.	4.0	25
13	Light availability and landâ€use history drive biodiversity and functional changes in forest herb layer communities. Journal of Ecology, 2020, 108, 1411-1425.	4.0	49
14	Comparing observer performance in vegetation records by efficiency graphs derived from rarefaction curves. Ecological Indicators, 2020, 109, 105790.	6.3	5
15	Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biology, 2020, 22, 410-424.	3.8	38
16	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	1
17	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	12.6	385
18	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	7.8	67

FrantiÅiek MÃiliÅi

#	Article	IF	CITATIONS
19	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
20	Western-Carpathian mountain spruce woodlands at their southern margin. Preslia, 2020, 92, .	2.8	3
21	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	3
22	Spruce representation in zonal woodlands may be overestimated when using pollen spectra from peatlands. Review of Palaeobotany and Palynology, 2019, 271, 104104.	1.5	5
23	Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 2019, 28, 1774-1786.	5.8	115
24	A general framework for quantifying the effects of land-use history on ecosystem dynamics. Ecological Indicators, 2019, 107, 105395.	6.3	5
25	Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 2019, 433, 405-418.	3.2	46
26	Environmental drivers interactively affect individual tree growth across temperate European forests. Global Change Biology, 2019, 25, 201-217.	9.5	44
27	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	9.5	93
28	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	2.2	51
29	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	2.7	11
30	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	7.5	49
31	Overstorey dynamics controls plant diversity in age-class temperate forests. Forest Ecology and Management, 2017, 391, 96-105.	3.2	39
32	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	4.9	89
33	Carbon stock in aboveground biomass of vegetation at the High Tatra Mts. twelve years after disturbance. Central European Forestry Journal, 2017, 63, 142-151.	0.8	5
34	Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research, 2017, 73, 57-71.	1.1	33
35	Drivers of treeline shift in different European mountains. Climate Research, 2017, 73, 135-150.	1.1	46
36	Syntaxonomy and ecology of acidophilous beech forest vegetation in Slovakia. Phytocoenologia, 2016, 46, 69-87.	0.5	12

FrantiÅiek MÃiliÅi

#	Article	IF	CITATIONS
37	Life stage, not climate change, explains observed tree range shifts. Global Change Biology, 2016, 22, 1904-1914.	9.5	46
38	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	9.5	124
39	Ecologically based height growth model and derived raster maps of Norway spruce site index inÂthe Western Carpathians. European Journal of Forest Research, 2013, 132, 691-705.	2.5	15
40	Post-harvest biomass stock and productivity of Calamagrostis epigejos community under beech and spruce forest stand. LesnÃcky ÄŒasopis, 2013, 59, .	0.8	4
41	The Research Site Vrchslatina – an experimental design and the main aims. LesnÃcky ÄŒasopis, 2013, 59, .	0.8	10
42	The impact of Norway spruce planting on herb vegetation in the mountain beech forests on two bedrock types. European Journal of Forest Research, 2012, 131, 1551-1569.	2.5	7